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Solution 4.1 Poisson Model and Negative-Binomial Model

(a) In the Poisson model we assume that N1, . . . , N10 are independent with Nt ∼ Poi(λvt) for all
t ∈ {1, . . . , 10}. We use Estimator 2.32 of the lecture notes to estimate the claims frequency
parameter λ by

λ̂MLE
10 =

∑10
t=1 Nt∑10
t=1 vt

= 10’224
100’000 ≈ 10.22%.

Let t ∈ {1, . . . , 10}. We have

E
[
Nt
vt

]
= E[Nt]

vt
= λvt

vt
= λ and Var

(
Nt
vt

)
= Var(Nt)

v2
t

= λvt
v2
t

= λ

vt
.

Note that the random variable Nt ∼ Poi(λvt) can be understood as

Nt
(d)=

vt∑
i=1

Ñi,

where Ñ1, . . . , Ñvt
are independent random variables that all follow a Poi(λ)-distribution.

Thus, we can use the Central Limit Theorem to get

Nt/vt − E [Nt/vt]√
Var (Nt/vt)

= Nt/vt − λ√
λ/vt

−→ Z,

as vt → ∞, where Z is a random variable following a standard normal distribution. This
leads to the approximation

P
[
λ−

√
λ/vt ≤ Nt/vt ≤ λ+

√
λ/vt

]
= P

[
−1 ≤ Nt/vt − λ√

λ/vt
≤ 1
]
≈ P(−1 ≤ Z ≤ 1) ≈ 0.7,

i.e. with a probability of roughly 70%, Nt/vt lies in the interval [λ−
√
λ/vt, λ+

√
λ/vt]. Since

λ is unknown, we replace it by the estimator λ̂MLE
10 to get the approximate interval[

λ̂MLE
10 −

√
λ̂MLE

10
/
vt, λ̂

MLE
10 +

√
λ̂MLE

10
/
vt

]
≈ [9.90%, 10.54%],

which should contain roughly 70% of the observed claims frequencies Nt/vt. We have the
following observations of the claims frequencies:

t 1 2 3 4 5 6 7 8 9 10
Nt/vt 10% 9.97% 9.85% 9.89% 10.56% 10.70% 9.94% 9.86% 10.93% 10.54%

Table 1: Observed claims frequencies Nt/vt.

We observe that instead of the expected, roughly seven observations, only four observations
lie in the estimated interval. We conclude that the assumption of having Poisson distributions
might not be reasonable.
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(b) By equation (2.8) of the lecture notes, the test statistic χ̂∗ is given by

χ̂∗ =
10∑
t=1

vt

(
Nt/vt − λ̂MLE

10

)2

λ̂MLE
10

and is approximately χ2-distributed with 10 − 1 = 9 degrees of freedom. By inserting the
numbers and λ̂MLE

10 calculated in (a), we get

χ̂∗ ≈ 14.84.

The probability that a random variable with a χ2-distribution with 9 degrees of freedom is
greater than 14.84 is approximately equal to 9.55%. Hence we can reject the null hypothesis
of having Poisson distributions only at significance levels that are higher than 9.55%. In
particular, we can not reject the null hypothesis at the significance level of 5%.

(c) In the negative-binomial model we assume that N1, . . . , N10 are independent with, condition-
ally given Θt, Nt ∼ Poi(Θtλvt) for all t ∈ {1, . . . , 10}, where Θ1, . . . ,Θ10

i.i.d.∼ Γ(γ, γ) for some
γ > 0. We use Estimator 2.28 of the lecture notes to estimate the claims frequency parameter
λ by

λ̂NB
10 =

∑10
t=1 Nt∑10
t=1 vt

= 10’224
100’000 ≈ 10.22%.

As in equation (2.7) of the lecture notes, we define

V̂ 2
10 = 1

9

10∑
t=1

vt

(
Nt
vt
− λ̂NB

10

)2
≈ 16.9%.

Let v = v1 = · · · = v10 = 10’000. Now we can use Estimator 2.30 of the lecture notes to
estimate the dispersion parameter γ by

γ̂NB
10 =

(
λ̂NB

10

)2

V̂ 2
10 − λ̂NB

10

1
9

( 10∑
t=1

vt −
∑10
t=1 v

2
t∑10

t=1 vt

)
=

(
λ̂NB

10

)2

V̂ 2
10 − λ̂NB

10

(
10v − 10v2

10v

)
9 =

(
λ̂NB

10

)2
v

V̂ 2
10 − λ̂NB

10
≈ 1576.15.

For all t ∈ {1, . . . , 10} we have

E
[
Nt
vt

]
= E[Nt]

vt
= E[E[Nt|Θt]]

vt
= E[Θtλvt]

vt
= λvt

vt
= λ,

since E[Θt] = 1, and

Var
(
Nt
vt

)
= E[Var(Nt|Θt)] + Var(E[Nt|Θt])

v2
t

= E[Θtλvt] + Var(Θtλvt)
v2
t

=
λ+ λ2vt

γ

vt
,

since Var(Θt) = 1/γ. Similarly as in the Poisson case in part (a), we get the estimated intervalλ̂NB
10 −

√√√√ λ̂NB
10 +

(
λ̂NB

10

)2
vt/γ̂NB

10

vt
, λ̂NB

10 +

√√√√ λ̂NB
10 +

(
λ̂NB

10

)2
vt/γ̂NB

10

vt

 ≈ [9.81%, 10.63%],

which should contain roughly 70% of the observed claims frequencies Nt/vt. Looking at
the observations given in Table 1 above, we see that eight of them lie in the estimated
interval, which is clearly better than in the Poisson case in part (a). In conclusion, the
negative-binomial model seems more reasonable than the Poisson model.
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Solution 4.2 χ2-Goodness-of-Fit-Analysis (R Exercise)

The R Code used in this exercise is provided below.

(a) (i) In Figure 1 (left) we can see that the n MLEs of λ approximately have a Gaussian
distribution with mean equal to the true value of λ = 10%. On the one hand, this is due
to the fact that (under regularity assumptions) the MLE is consistent and asymptotically
Gaussian distributed (as T →∞). For more details we refer to Chapter 6 of the textbook
“Theory of Point Estimation” by E.L. Lehmann and G. Casella (2nd edition, 1998).
On the other hand, in the Poisson case we directly have an approximate Gaussian
distribution of the MLE, independently of the value of T , provided that the volume v is
large enough, see also the solution to Exercise 4.1.

(ii) From the QQ plot, see Figure 1 (right), we deduce that the test statistic indeed has
approximately a χ2-distribution with T − 1 = 9 degrees of freedom. We only observe
slightly heavier tails in the observations, compared to a χ2-distribution with T − 1 = 9
degrees of freedom. By increasing the values for n and v, we get even closer to a
χ2-distribution with T − 1 = 9 degrees of freedom.

(iii) We observe that we wrongly reject the null hypothesis H0 of having a Poisson distribution
as claims count distribution in 5.16% of the cases. This corresponds almost perfectly to
the chosen significance level (indicating the probability of rejecting H0 even though it is
true) of 5%.
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Figure 1: Plot of the distribution of the MLEs (left). QQ plot of the theoretical quantiles of a
χ2-distribution with T − 1 = 9 degrees of freedom against the empirical quantiles of the values of
the test statistic (right).

(b) (i) We observe the following results:

γ = 100 γ =1’000 γ =10’000
Percentage with which we reject H0 99.78 48.38 7.96

Table 2: Percentage with which we reject H0 for different values of γ.
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(ii) We see that in case of a negative binomial distribution with a comparably small parameter
(γ = 100) for the latent gamma distribution we are almost always able to reject the
null hypothesis H0 of having a Poisson distribution as claims count distribution. The
bigger γ, the less we are able to reject H0. This is because for very large values of γ, the
corresponding gamma distribution does not vary a lot, i.e. is almost constantly equal to
1. Thus, for increasing γ, we move back to the Poisson model and, consequently, the
χ2-goodness-of-fit test does not detect the latent variable anymore.

1 ### Exercise 2a)
2
3 ### Define the function that generates the data and applies the
4 ### chi - squared goodness -of -fit test in order to test the
5 ### Poisson assumption
6 chi. squared .test .1 <- function (seed1 , n, t, lambda , v, alpha){
7
8 ### Generate the claims counts
9 set.seed(seed1)

10 claims . counts <- array(rpois(n*t, lambda *v), dim=c(t,n))
11
12 ### Distribution of the MLEs of lambda
13 lambda _MLE <- colSums ( claims . counts )/(t*v)
14 plot( density ( lambda _MLE), main=" Distribution of the MLEs",

xlab=" Values of the MLEs", cex.lab =1.25 , cex.main =1.25 ,
cex.axis =1.25)

15 abline (v=mean( lambda _MLE), col="red")
16 legend (" topleft ", lty =1, col="red", legend ="mean")
17 print("See plot for the distribution of the MLEs")
18
19 ### Distribution of the test statistic
20 lambda _MLE_array <- array(rep( lambda _MLE ,each=t), dim=c(t,n))
21 test. statistic <- colSums (v*( claims . counts /v- lambda _MLE_array

)^2/ lambda _MLE_array)
22 theoretical . quantiles <- qchisq (p=(1:n)/(n+1) , df=t -1)
23 empirical . quantiles <- test. statistic [order(test. statistic )]
24 lim <- c(min( theoretical .quantiles , empirical . quantiles ), max(

theoretical .quantiles , empirical . quantiles ))
25 plot( theoretical .quantiles , empirical .quantiles , xlim=lim ,

ylim=lim , xlab=" Theoretical Quantiles ", ylab=" Empirical
Quantiles ", main="QQ plot", cex.lab =1.25 , cex.main =1.25 ,
cex.axis =1.25)

26 abline (a=0, b=1, col="red")
27 print("See the QQ plot for a comparison between the empirical

quantiles of the test statistic and the theoretical
quantiles of a chi - squared distribution with t-1 degrees
of freedom ")

28
29 ### Result of the hypothesis test
30 sum(test. statistic > qchisq (p=1-alpha , df=t -1))/n
31 }
32
33 ### Apply the function with the desired parameters
34 chi. squared .test .1( seed1 =100 , n=10000 , t=10, lambda =0.1 , v

=10000 , alpha =0.05)
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35
36
37
38 ### Exercise 2b)
39
40 ### Define the function that generates the data and applies the
41 ### chi - squared goodness -of -fit test in order to test the
42 ### Poisson assumption
43 chi. squared .test .2 <- function (seed1 , n, t, lambda , v, alpha ,

gamma){
44
45 ### Generate the claims counts
46 set.seed(seed1)
47 claims . counts <- array( rnbinom (n*t, size = gamma , mu= lambda *v

), dim=c(t,n))
48
49 ### Calculate the MLEs
50 lambda _MLE <- colSums ( claims . counts )/(t*v)
51
52 ### Calculate the test statistic
53 lambda _MLE_array <- array(rep( lambda _MLE ,each=t), dim=c(t,n))
54 test. statistic <- colSums (v*( claims . counts /v- lambda _MLE_array

)^2/ lambda _MLE_array)
55
56 ### Result of the hypothesis test
57 sum(test. statistic > qchisq (p=1-alpha , df=t -1))/n
58 }
59
60 ### Apply the function with the desired parameters
61 chi. squared .test .2( seed1 =100 , n=10000 , t=10, lambda =0.1 , v

=10000 , alpha =0.05 , gamma =100)
62 chi. squared .test .2( seed1 =100 , n=10000 , t=10, lambda =0.1 , v

=10000 , alpha =0.05 , gamma =1000)
63 chi. squared .test .2( seed1 =100 , n=10000 , t=10, lambda =0.1 , v

=10000 , alpha =0.05 , gamma =10000)

Solution 4.3 Compound Poisson Distribution

(a) Since S ∼ CompPoi(λv,G), we can write S as

S =
N∑
i=1

Yi,

where N ∼ Poi(λv), Y1, Y2, . . . are i.i.d. with distribution function G and N and Y1, Y2, . . .
are independent. Now we can define Ssc, Smc and Slc as

Ssc =
N∑
i=1

Yi1{Yi≤1’000}, Smc =
N∑
i=1

Yi1{1’000<Yi≤1’000’000} and Slc =
N∑
i=1

Yi1{Yi>1’000’000}.
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(b) Note that according to Table 2 given on the exercise sheet, we have

P[Y1 ≤ 1’000] = P[Y = 100] + P[Y = 300] + P[Y = 500] = 3
20 + 4

20 + 3
20 = 1

2 ,

P[1’000 < Y1 ≤ 1’000’000] = P[Y = 6’000] + P[Y = 100’000] + P[Y = 500’000]

= 2
15 + 2

15 + 1
15

= 1
3 and

P[Y1 > 1’000’000] = 1− P[Y1 ≤ 1’000’000] = 1− 1
2 −

1
3 = 1

6 .

Thus, using Theorem 2.14 of the lecture notes (disjoint decomposition of compound Poisson
distributions), we get

Ssc ∼ CompPoi
(
λv

2 , Gsc

)
, Smc ∼ CompPoi

(
λv

3 , Gmc

)
and Slc ∼ CompPoi

(
λv

6 , Glc

)
,

where

Gsc(y) = P[Y1 ≤ y|Y1 ≤ 1’000],
Gmc(y) = P[Y1 ≤ y|1’000 < Y1 ≤ 1’000’000] and
Glc(y) = P[Y1 ≤ y|Y1 > 1’000’000],

for all y ∈ R. In particular, for a random variable Ysc having distribution function Gsc, we
have

P[Ysc = 100] = P[Y = 100]
P[Y1 ≤ 1’000] = 3/20

1/2 = 3
10 ,

P[Ysc = 300] = P[Y = 300]
P[Y1 ≤ 1’000] = 4/20

1/2 = 4
10 and

P[Ysc = 500] = P[Y = 500]
P[Y1 ≤ 1’000] = 3/20

1/2 = 3
10 .

Analogously, for random variables Ymc and Ylc having distribution functions Gmc and Glc,
respectively, we get

P[Ymc = 6’000] = 2
5 , P[Ymc = 100’000] = 2

5 and P[Ymc = 500’000] = 1
5 ,

as well as

P[Ylc = 2’000’000] = 1
2 , P[Ylc = 5’000’000] = 1

4 and P[Ylc = 10’000’000] = 1
4 .

(c) According to Theorem 2.14 of the lecture notes, Ssc, Smc and Slc are independent.

(d) In order to find E[Ssc], we need E[Ysc], which can be calculated as

E[Ysc] = 100·P[Ysc = 100]+300·P[Ymc = 300]+500·P[Ylc = 500] = 300
10 + 1200

10 + 1500
10 = 300.

Now we can apply Proposition 2.11 of the lecture notes to get

E[Ssc] = λv

2 E[Ysc] = 0.3 · 300 = 90.
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Similarly, we get
E[Ymc] = 142’400 and E[Ylc] = 4’750’000.

Thus, we find

E[Smc] = λv

3 E[Ymc] = 28’480 and E[Slc] = λv

6 E[Ylc] = 475’000.

Since S = Ssc + Smc + Slc, we get

E[S] = E[Ssc] + E[Smc] + E[Slc] = 503’570.

In order to find Var(Ssc), we need E[Y 2
sc], which can be calculated as

E[Y 2
sc] = 1002 · P[Ysc = 100] + 3002 · P[Ymc = 300] + 5002 · P[Ylc = 500]

= 30’000
10 + 360’000

10 + 750’000
10 = 114’000.

Now we can apply Proposition 2.11 of the lecture notes to get

Var(Ssc) = λv

2 E[Y 2
sc] = 0.3 · 114’000 = 34’200.

Similarly, we get

E[Y 2
mc] = 54’014’400’000 and E[Y 2

lc ] = 33’250’000’000’000.

Thus, we find

Var(Smc) = λv

3 E[Y 2
mc] = 10’802’880’000 and Var(Slc) = λv

6 E[Y 2
lc ] = 3’325’000’000’000.

Since S = Ssc + Smc + Slc and Ssc, Smc and Slc are independent, we get√
Var(S) =

√
Var(Ssc) + Var(Smc) + Var(Slc) =

√
3’335’802’914’200 ≈ 1’826’418.

(e) First, we define the random variable Nlc as

Nlc ∼ Poi
(
λv

6

)
.

The probability that the total claim in the large claims layer exceeds 5 million can be calculated
by looking at the complement, i.e. at the probability that the total claim in the large claims
layer does not exceed 5 million. Since with three claims in the large claims layer we already
exceed 5 million, it is enough to consider only up to two claims. Then, we get

P [Slc ≤ 5’000’000] = P[Nlc = 0] + P[Nlc = 1]P[Ylc ≤ 5’000’000] + P[Nlc = 2]P[Ylc = 2’000’000]2

= exp
{
−λv6

}
+ exp

{
−λv6

}
λv

6

(
1
2 + 1

4

)
+ exp

{
−λv6

}(
λv

6

)2 1
2

1
4

= exp {−0.1} (1 + 0.075 + 0.00125)
≈ 97.4%.

We can conclude that

P [Slc > 5’000’000] = 1− P [Slc ≤ 5’000’000] ≈ 2.6%.
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Solution 4.4 Method of Moments

If Y ∼ Γ(γ, c), we have
E[Y ] = γ

c
and Var(Y ) = γ

c2 .

We define the sample mean µ̂8 and the sample variance σ̂2
8 of the eight observations y1, . . . , y8

given on the exercise sheet as

µ̂8 = 1
8

8∑
i=1

yi = 64
8 = 8 and σ̂2

8 = 1
7

8∑
i=1

(yi − µ̂8)2 = 28
7 = 4.

The method of moments estimates (γ̂, ĉ) of (γ, c) are defined to be those values that solve the
equations

µ̂8 = γ̂

ĉ
and σ̂2

8 = γ̂

ĉ2 .

We see that γ̂ = µ̂8ĉ and, thus,
σ̂2

8 = µ̂8ĉ

ĉ2 = µ̂8

ĉ
,

which is equivalent to
ĉ = µ̂8

σ̂2
8

= 8
4 = 2.

Moreover, we get

γ̂ = µ̂2
8
σ̂2

8
= 64

4 = 16.

We conclude that the method of moments estimates are given by (γ̂, ĉ) = (16, 2).
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