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Solution 5.1 Large Claims

(a) The density of a Pareto distribution with threshold θ = 50 and tail index α > 0 is given by

f(x) = fα(x) = α

θ

(x
θ

)−(α+1)
,

for all x ≥ θ. Using the independence of Y1, . . . , Yn, the joint likelihood function LY(α) for
the observation Y = (Y1, . . . , Yn) can be written as

LY(α) =
n∏
i=1

fα(Yi) =
n∏
i=1

α

θ

(
Yi
θ

)−(α+1)
=

n∏
i=1

αθαY
−(α+1)
i ,

whereas the joint log-likelihood function `Y(α) is given by

`Y(α) = logLY(α) =
n∑
i=1

logα+α log θ−(α+1) log Yi = n logα+nα log θ−(α+1)
n∑
i=1

log Yi.

The MLE α̂MLE
n is defined as

α̂MLE
n = arg max

α>0
LY(α) = arg max

α>0
`Y(α).

Calculating the first and the second derivative of `Y(α) with respect to α, we get

∂

∂α
`Y(α) = n

α
+ n log θ −

n∑
i=1

log Yi and

∂2

∂α2 `Y(α) = ∂

∂α

(
n

α
+ n log θ −

n∑
i=1

log Yi

)
= − n

α2 < 0,

for all α > 0, from which we can conclude that `Y(α) is strictly concave in α. Thus α̂MLE
n

can be found by setting the first derivative of `Y(α) equal to 0. We get

n

α̂MLE
n

+ n log θ −
n∑
i=1

log Yi = 0 ⇐⇒ α̂MLE
n =

(
1
n

n∑
i=1

log Yi − log θ
)−1

.

(b) Let α̂ denote the unbiased version of the MLE for the storm and flood data given on the
exercise sheet. Since we observed 15 storm and flood events, we have n = 15. Thus α̂ can be
calculated as

α̂ = n− 1
n

(
1
n

n∑
i=1

log Yi − log θ
)−1

= 14
15

(
1
15

15∑
i=1

log Yi − log 50
)−1

≈ 0.98,

where for Y1, . . . , Y15 we plugged in the observed claim sizes given on the exercise sheet. Note
that with α̂ = 0.98 < 1, the expectation of the claim sizes does not exist.
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(c) We define N1, . . . , N20 to be the number of yearly storm and flood events during the twenty
years 1986− 2005. By assumption, we have

N1, . . . , N20
i.i.d.∼ Poi(λ).

Using Estimator 2.32 of the lecture notes with v1 = · · · = v20 = 1, the MLE λ̂ of λ is given by

λ̂ = 1∑20
i=1 1

20∑
i=1

Ni = 1
20

20∑
i=1

Ni.

Since we observed 15 storm and flood events in total, we get

λ̂ = 15
20 = 0.75.

(d) Using Proposition 2.11 of the lecture notes, the expected yearly claim amount E[S] of storm
and flood events is given by

E[S] = λE[min{Y1,M}].
The expected value of min{Y1,M} can be calculated as

E[min{Y1,M}] = E[min{Y1,M}1{Y1≤M}] + E[min{Y1,M}1{Y1>M}]
= E[Y11{Y1≤M}] + E[M1{Y1>M}]
= E[Y11{Y1≤M}] +MP[Y1 > M ],

where for E[Y11{Y1≤M}] and MP[Y1 > M ] we have

E[Y11{Y1≤M}] =
∫ ∞
θ

x1{x≤M}f(x) dx =
∫ M

θ

x
α

θ

(x
θ

)−(α+1)
dx = αθα

[
1

1− αx
1−α

]M
θ

= α

1− αθ
αM1−α − α

1− αθ = α

1− αθ
(
M

θ

)1−α
− α

1− αθ

= θ
α

1− α

[(
M

θ

)1−α
− 1
]

= θ
α

α− 1

[
1−

(
M

θ

)1−α
]

and

MP[Y1 > M ] = M (1− P[Y1 ≤M ]) = M

(
1−

[
1−

(
M

θ

)−α])
= θ

(
M

θ

)1−α
.

Hence, we get

E[min{Y1,M}] = θ
α

α− 1

[
1−

(
M

θ

)1−α
]

+ θ

(
M

θ

)1−α
= θ

α

α− 1 −
θ

α− 1

(
M

θ

)1−α
.

Replacing the unknown parameters by their estimates, we get for the estimated expected
total yearly claim amount Ê[S]:

Ê[S] = λ̂

[
θ

1− α̂

(
M

θ

)1−α̂
− α̂

1− α̂ θ
]
≈ 0.75

[
50

1− 0.98

(
2’000

50

)1−0.98
− 0.98 · 50

1− 0.98

]
≈ 180.4.

(e) Since S ∼ CompPoi(λ,G), we can write S as

S =
N∑
i=1

Yi,
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where N ∼ Poi(λ), Y1, Y2, . . . are i.i.d. with distribution function G and N and Y1, Y2, . . . are
independent. Since we are only interested in events that exceed the level of M = 2 billion
CHF, we define SM as

SM =
N∑
i=1

Yi1{Yi>M}.

Due to Theorem 2.14 of the lecture notes, we have SM ∼ CompPoi(λM , GM ) for some
distribution function GM and

λM = λP[Y1 > M ] = λ (1− P[Y1 ≤M ]) = λ

(
1−

[
1−

(
M

θ

)−α])
= λ

(
M

θ

)−α
.

Defining a random variable NM ∼ Poi(λM ), the probability that we observe at least one
storm and flood event in a particular year is given by

P[NM ≥ 1] = 1− P[NM = 0] = 1− exp{−λM} = 1− exp
{
−λ
(
M

θ

)−α}
.

If we replace the unknown parameters by their estimates, this probability can be estimated by

P̂[NM ≥ 1] = 1− exp
{
−λ̂
(
M

θ

)−α̂}
≈ 1− exp

{
−0.75

(
2’000

50

)−0.98
}
≈ 0.02.

Note that in particular such a storm and flood event that exceeds the level of 2 billion CHF
is expected roughly every 1/0.02 = 50 years.

Solution 5.2 Claim Size Distributions (R Exercise)
All of the four considered distributions (gamma, Weibull, log-normal and Pareto) depend on two
parameters. Thus, by fixing the mean and the standard deviation, these parameters are uniquely
determined. The R code used to create the plots in the Figures 1, 2 and 3 can be found below.
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Figure 1: Plot of the densities of the four i.i.d. samples (left). Box plots of the four i.i.d. samples
(right).
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In Figure 1 we show the densities (left) of the generated i.i.d. samples as well as the corresponding
box plots (right), both on a log scale. We only consider logarithmic values starting from 0. We
see for example that we have a lot of very small values in case of the gamma distribution (and
also in case of the Weibull distribution). The smallest values observed are considerably bigger for
the log-normal and especially the Pareto distribution. Moreover, the value of the biggest value
observed increases in going from the gamma over the Weibull and the log-normal to the Pareto
distribution. We can not say much about the tails from looking at these two plots.
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Figure 2: Plot of the empirical distribution functions of the four i.i.d. samples (left). Plot of the
empirical loss size index functions of the four i.i.d. samples (right).

In Figure 2 we show the plots of the empirical distribution functions (left, on a log scale) and of
the empirical loss size index functions (right) of the generated i.i.d. samples. For the plot of the
empirical distribution functions we only consider logarithmic values starting from 0. We observe that
the empirical distribution functions almost perfectly intersect at the point with x-coordinate equal
to log(10’000)≈ 9.21. This means that for all of the four considered distributions approximately
the same percentage of observations is smaller than the expected value. This percentage is roughly
equal to 75%, indicating that three quarters of the observations are smaller than the expected value
and one quarter of the observations are above the expected value. Thus, not surprisingly, the large
claims are the main driver of the expected value. We get confirmed the observations from Figure 1,
namely that the smallest values observed are considerably bigger for the log-normal and especially
the Pareto distribution, compared to the gamma and the Weibull distribution. This carries over to
the plot of the empirical loss size index function. Also these two plots do not tell us much about
the tails of the distributions.
In Figure 3 we show the log-log plots (left) and the plot of the empirical mean excess functions
(right) of the generated i.i.d. samples. These two plots can be used for studying the tails of the
distributions. We see in both plots that the gamma distribution is the most light-tailed distribution.
The Weibull distribution and the log-normal distribution have a similar tail behaviour, with slightly
heavier tails of the log-normal distribution. Note that this similar tail behaviour is due to the
value of the parameter τ of the Weibull distribution being smaller than 1. With a value τ ≥ 1
the distribution gets (even) more light-tailed. The most heavy-tailed distribution among the four
distributions we analyzed here is the Pareto distribution.
Summarizing, we can say that although we fixed the mean and the standard deviation to be the
same, all of the four considered distributions behave differently, implying that one has to carefully
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Figure 3: Log-log plots of the four i.i.d. samples (left). Plot of the empirical mean excess functions
of the four i.i.d. samples (right).

choose the claim size distribution in order to find the one which suits best in a particular problem
at hand.

1 ### Size of the i.i.d. sample
2 n <- 10000
3
4 ### Generate the gamma i.i.d. sample
5 gamma <- 1/4
6 c <- 1/40000
7 set.seed (100)
8 gamma. sample <- rgamma (n=n, shape=gamma , rate=c)
9

10 ### Generate the Weibull i.i.d. sample
11 tau <- 0.54
12 c <- 0.000175
13 set.seed (200)
14 weibull . sample <- rgamma (n=n, shape =1, rate =1) ^(1/tau)/c
15
16 ### Generate the log - normal i.i.d. sample
17 mu <- log (2000*sqrt (5))
18 sigma. squared <- log (5)
19 set.seed (300)
20 lognormal . sample <- exp(rnorm(n=n, mean=mu , sd=sqrt(sigma. squared ))

)
21
22 ### Generate the Pareto i.i.d. sample
23 theta <- 10000*(sqrt (5)/(2+ sqrt (5)))
24 alpha <- 1+ sqrt (5)/2
25 set.seed (400)
26 pareto . sample <- theta*exp( rgamma (n=n, shape =1, rate=alpha))
27
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28
29 ### Density plot
30 ymax <- max( density (log(gamma. sample ))$y, density (log( weibull .

sample ))$y, density (log( lognormal . sample ))$y, density (log( pareto
. sample ))$y)

31 ymax2 <- max(log(gamma. sample ),log( weibull . sample ),log( lognormal .
sample ),log( pareto . sample ))

32 plot( density (log(gamma. sample )), xlim=c(0, ymax2), col="grey", ylim=
c(0, ymax), main=" Densities ", xlab=" Sampled values (log scale)",
cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , lwd =2)

33 lines( density (log( weibull . sample )), col="red", xlim=c(0, ymax2), lwd
=2)

34 lines( density (log( lognormal . sample )), col="blue", xlim=c(0, ymax2),
lwd =2)

35 lines( density (log( pareto . sample )), col="green", xlim=c(0, ymax2),
lwd =2)

36 legend (" topleft ", lty =1, lwd =2, col=c("grey","red","blue","green"),
legend =c("Gamma"," Weibull ","Log - normal "," Pareto "))

37
38
39 ### Boxplot
40 boxplot (log(gamma. sample ), log( weibull . sample ), log( lognormal .

sample ), log( pareto . sample ), ylim=c(0, ymax2), col=c("grey","red"
,"blue","green"), main="Box plot", names=c("Gamma"," Weibull ","
Log - normal "," Pareto "), xlab=" Distribution ", ylab=" Sampled values

(log scale)", cex.lab =1.25 , cex.main =1.25 , cex.axis =0.95)
41
42
43 ### Plot of the empirical distribution function
44 plot(log(gamma. sample [order(gamma. sample )]), 1:10000 /10001 , xlim=c

(0, ymax2), type="l", col="grey", main=" Empirical distribution
function ", xlab=" Sampled values (log scale)", ylab=" Empirical
distribution function ", cex.lab =1.25 , cex.main =1.25 , cex.axis
=1.25 , lwd =2)

45 lines(log( weibull . sample [order( weibull . sample )]), 1:10000 /10001 ,
xlim=c(0, ymax2), col="red", lwd =2)

46 lines(log( lognormal . sample [order( lognormal . sample )]), 1:10000 /
10001 , xlim=c(0, ymax2), col="blue", lwd =2)

47 lines(log( pareto . sample [order( pareto . sample )]), 1:10000 /10001 , xlim
=c(0, ymax2), col="green", lwd =2)

48 legend (" topleft ", lty =1, lwd =2, col=c("grey","red","blue","green"),
legend =c("Gamma"," Weibull ","Log - normal "," Pareto "))

49
50
51 ### Plot of the empirical loss size index function
52 plot (1:n/n, cumsum (gamma. sample [order(gamma. sample )])/sum(gamma.

sample ), type="l", col="grey", main=" Empirical loss size index
function ", xlab=" Number of claims (in 100%)", ylab=" Empirical
loss size index function ", cex.lab =1.25 , cex.main =1.25 , cex.axis
=1.25 , lwd =2)

53 lines (1:n/n, cumsum ( weibull . sample [order( weibull . sample )])/sum(
weibull . sample ), type="l", col="red", lwd =2)
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54 lines (1:n/n, cumsum ( lognormal . sample [order( lognormal . sample )])/sum(
lognormal . sample ), type="l", col="blue", lwd =2)

55 lines (1:n/n, cumsum ( pareto . sample [order( pareto . sample )])/sum( pareto
. sample ), type="l", col="green", lwd =2)

56 legend (" topleft ", lty =1, lwd =2, col=c("grey","red","blue","green"),
legend =c("Gamma"," Weibull ","Log - normal "," Pareto "))

57
58
59 ### Log -log plot
60 plot(log(gamma. sample [order(gamma. sample )]), log (1 -1:n/(n+1)), xlim

=c(0, ymax2), type="l", col="grey", main="Log -log plot", xlab="
log( sampled values )", ylab="log (1- empirical distribution
function )", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , lwd =2)

61 lines(log( weibull . sample [order( weibull . sample )]), log (1 -1:n/(n+1)),
xlim=c(0, ymax2), type="l", col="red", lwd =2)

62 lines(log( lognormal . sample [order( lognormal . sample )]), log (1 -1:n/(n
+1)), xlim=c(0, ymax2), type="l", col="blue", lwd =2)

63 lines(log( pareto . sample [order( pareto . sample )]), log (1 -1:n/(n+1)),
xlim=c(0, ymax2), type="l", col="green", lwd =2)

64 legend (" bottomleft ", lty =1, lwd =2, col=c("grey","red","blue","green
"), legend =c("Gamma"," Weibull ","Log - normal "," Pareto "))

65
66
67 ### Plot of the empirical mean excess function
68 mean. excess . function <- Vectorize ( function (threshold ,input. sample ){
69 mean(input. sample [input.sample > threshold ])-threshold
70 }," threshold ")
71 xmax <- pareto . sample [order( pareto . sample )][n -1]
72 ymax3 <- max( pareto . sample )-xmax
73 plot(gamma. sample [order(gamma. sample )][-n],mean. excess . function (

gamma. sample [order(gamma. sample )][-n],gamma. sample ), pch =16, col
="grey", xlim=c(0, xmax), ylim=c(0, ymax3), main=" Empirical mean
excess function ", xlab=" Threshold ", ylab="Mean excess function ",

cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)
74 points ( weibull . sample [order( weibull . sample )][-n], mean. excess .

function ( weibull . sample [order( weibull . sample )][-n], weibull .
sample ), pch =16, col="red", ylim=c(0, ymax3))

75 points ( lognormal . sample [order( lognormal . sample )][-n], mean. excess .
function ( lognormal . sample [order( lognormal . sample )][-n], lognormal
. sample ), pch =16, col="blue", ylim=c(0, ymax3))

76 points ( pareto . sample [order( pareto . sample )][-n], mean. excess .
function ( pareto . sample [order( pareto . sample )][-n], pareto . sample ),
pch =16, col="green", ylim=c(0, ymax3))

77 legend (" topleft ", pch =16, col=c("grey","red","blue","green"),
legend =c("Gamma"," Weibull ","Log - normal "," Pareto "))

Solution 5.3 Pareto Distribution
The density g and the distribution function G of Y are given by

g(x) = α

θ

(x
θ

)−(α+1)
and G(x) = 1−

(x
θ

)−α
,
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for all x ≥ θ.

(a) The survival function Ḡ = 1−G of Y is

Ḡ(x) = 1−G(x) =
(x
θ

)−α
,

for all x ≥ θ. Hence, for all t > 0 we have

lim
x→∞

Ḡ(xt)
Ḡ(x)

= lim
x→∞

(xt/θ)−α

(x/θ)−α = t−α.

Thus, by definition, the survival function of Y is regularly varying at infinity with tail index
α.

(b) Let θ ≤ u1 < u2. Then, the expected value of Y within the layer (u1, u2] can be calculated as

E[Y 1{u1<Y≤u2}] =
∫ ∞
θ

x1{u1<x≤u2}g(x) dx =
∫ u2

u1

x
α

θ

(x
θ

)−(α+1)
dx = αθ

∫ u2

u1

1
θ

(x
θ

)−α
dx.

In the case α 6= 1, we get

E[Y 1{u1<Y≤u2}] = αθ

[
− 1
α− 1

(x
θ

)−α+1
]u2

u1

= θ
α

α− 1

[(u1

θ

)−α+1
−
(u2

θ

)−α+1
]
,

and if α = 1, we get

E[Y 1{u1<Y≤u2}] = θ

∫ u2

u1

1
x
dx = θ log

(
u2

u1

)
.

(c) Let α > 1 and y > θ. Then, the expected value µY of Y is given by

µY = θ
α

α− 1

and, similarly as in part (b), we get

E[Y 1{Y≤y}] = E[Y 1{θ<Y≤y}] = θ
α

α− 1

[(
θ

θ

)−α+1
−
(y
θ

)−α+1
]

= µY

[
1−

(y
θ

)−α+1
]
.

Hence, for the loss size index function for level y > θ we have

I[G(y)] = 1
µY

E[Y 1{Y≤y}] = 1−
(y
θ

)−α+1
∈ [0, 1].

(d) Let α > 1 and u > θ. The mean excess function of Y above u can be calculated as

e(u) = E[Y − u|Y > u] = E[Y |Y > u]− u =
E[Y 1{Y >u}]
P[Y > u] − u =

E[Y 1{Y >u}]
Ḡ(u)

− u,

where for E[Y 1{Y >u}] we have, similarly as in part (b),

E[Y 1{Y >u}] = αθ

[
− 1
α− 1

(x
θ

)−α+1
]∞
u

= α

α− 1θ
(u
θ

)−α+1
= α

α− 1uḠ(u).

Thus, we get
e(u) = α

α− 1u− u = 1
α− 1u.

Note that the mean excess function u 7→ e(u) has slope 1
α−1 > 0.
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Solution 5.4 Kolmogorov-Smirnov Test

The distribution function G0 of a Weibull distribution with shape parameter τ = 1
2 and scale

parameter c = 1 is given by
G0(y) = 1− exp{−y1/2},

for all y ≥ 0. Note that since G0 is continuous, we are allowed to apply a Kolmogorov-Smirnov test.
If x = (− log u)2 for some u ∈ (0, 1), we have

G0(x) = 1− exp
{
−
[
(− log u)2]1/2

}
= 1− exp {log u} = 1− u.

Hence, if we apply G0 to x1, . . . , x5, we get

G0(x1) = 2
40 , G0(x2) = 3

40 , G0(x3) = 5
40 , G0(x4) = 6

40 , G0(x5) = 30
40 .

Moreover, the empirical distribution function Ĝ5 of the sample x1, . . . , x5 is given by

Ĝ5(y) =



0 if y < x1,
1/5 if x1 ≤ y < x2,
2/5 if x2 ≤ y < x3,
3/5 if x3 ≤ y < x4,
4/5 if x4 ≤ y < x5,
1 if y ≥ x5.

The Kolmogorov-Smirnov test statistic D5 is defined as

D5 = sup
y∈R

∣∣∣Ĝ5(y)−G0(y)
∣∣∣ .

Since G0 is continuous and strictly increasing with range [0, 1) and Ĝ5 is piecewise constant and
attains both the values 0 and 1, it is sufficient to consider the discontinuities of Ĝ5 to find D5. We
define

f(s−) = lim
r↗s

f(r),

for all s ∈ R, where the function f stands for G0 and Ĝ5. Since G0 is continuous, we have
G0(s−) = G0(s) for all s ∈ R. The values of G0 and Ĝ5 and their differences (in absolute value)
can be summarized in the following table:

xi, xi− x1− x1 x2− x2 x3− x3 x4− x4 x5− x5

Ĝ5(·) 0 8/40 8/40 16/40 16/40 24/40 24/40 32/40 32/40 1
G0(·) 2/40 2/40 3/40 3/40 5/40 5/40 6/40 6/40 30/40 30/40

|Ĝ5(·)−G0(·)| 2/40 6/40 5/40 13/40 11/40 19/40 18/40 26/40 2/40 10/40

Table 1: Values of G0 and Ĝ5, and their differences (in absolute value).

From this table we see that D5 = 26/40 = 0.65. Let q = 5%. By writing K←(1 − q) for the
(1− q)-quantile of the Kolmogorov distribution, we have K←(1− q) = 1.36. Since

K←(1− q)√
5

≈ 0.61 < 0.65 = D5,

we can reject the null hypothesis (at significance level of 5%) of having a Weibull distribution with
shape parameter τ = 1

2 and scale parameter c = 1 as claim size distribution.
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