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Solution 7.1 Hill Estimator

An example of a possible R code is given below. The Hill plot (on the left) and the log-log plot (on
the right) are given in Figure 1. Note that even though we sampled from a Pareto distribution with
tail index α = 2, it is not at all clear to see that the data comes from a Pareto distribution. In the
Hill plot we see that, first, the estimates of α seem more or less correct, but starting from the 180
largest observations, the plot suggests a higher α or even another distribution. In the log-log plot
we see that for small-sized and medium-sized claims the fit seems to be fine. But looking at the
largest claims, we would conclude that our data is not as heavy-tailed as a true Pareto distribution
with threshold θ = 10 million and tail index α = 2 would suggest. We are confronted with these
problems even though we sampled directly from a Pareto distribution. This might indicate the
difficulties one faces when trying to fit such a distribution to a real data set, where, to make matters
even worse, we often have far less than 300 observations (as we have in this example) and, moreover,
the observations may be contaminated by other distributions.
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Figure 1: Hill plot for determining the tail index α (left). Log-log plot for the observations and the
Pareto distribution (right).

1 ### Define the function that creates the Hill plot
2 hill.plot. function <- function (n, theta , alpha , seed1){
3
4 ### Generate n independent Pareto observations
5 set.seed(seed1)
6 data .1 <- rgamma (n, shape = 1, scale = 1/alpha)
7 data <- theta * exp(data .1)
8
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9 ### Order the data
10 data. ordered <- data[order(data , decreasing = FALSE)]
11
12 ### Take the logarithm
13 log.data. ordered <- log(data. ordered )
14
15 ### Number of observations
16 n.obs <- n:5
17
18 ### Hill estimator
19 hill. estimator <- (( sum(log.data. ordered )-cumsum (log.data. ordered

) + log.data. ordered )[-((n -3):n)]/n.obs - log.data. ordered [-((
n -3):n)]) ^( -1)

20
21 ### Confidence bounds (see Lemma 3.8 of the lecture notes)
22 upper.bound <- hill. estimator + sqrt(n.obs ^2/((n.obs -1) ^2*(n.obs

-2))*hill. estimator ^2)
23 lower.bound <- hill. estimator - sqrt(n.obs ^2/((n.obs -1) ^2*(n.obs

-2))*hill. estimator ^2)
24
25 ### Hill plot
26 plot(hill.estimator , ylim = c(min(hill. estimator ) -1,max(hill.

estimator )+1) , xaxt="n", xlab = " Number of observations ", ylab
= " Pareto tail index parameter ", main = "Hill plot for alpha"

, cex = 0.5, cex.lab = 1.25 , cex.main = 1.25 , cex.axis = 1.25)
27 axis (1,at=c(1, seq(from = n/10+1 , to = n*9/10+1 , by = n/10) ,n -5) ,

c(seq(from = n, to = n/10, by = -n/10) ,5))
28 lines(upper.bound)
29 lines(lower.bound)
30 abline (h = alpha , col = "blue",lwd =2)
31 legend (" topleft ", col=c("blue", "black"), lty=c(1,NA), pch = c(NA

,1) , lwd=c(2,NA), legend =c("true tail index"," estimated tail
index"))

32 }
33
34 ### Define the function that creates the log -log plot
35 log.log.plot. function <- function (n, theta , alpha , seed1){
36
37 ### Generate n independent Pareto observations
38 set.seed(seed1)
39 data .1 <- rgamma (n, shape = 1, scale = 1/alpha)
40 data <- theta * exp(data .1)
41
42 ### Order the data and take the logarithm
43 log.data. ordered <- log(data[order(data , decreasing = FALSE)])
44
45 ### True survival function
46 true.sf <- (data. ordered /theta)^(- alpha)
47
48 ### Empirical survival function
49 empirical .sf <- 1 - (1:n)/(n+1)
50
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51 ### Log -log plot
52 plot(log.data.ordered , log(true.sf), xlab = "log(claim size)",

ylab = "log (1 - distribution function )", ylim = c(min(log(true
.sf),log( empirical .sf)),max(log(true.sf),log( empirical .sf))),
main = "Log -log plot", cex.lab = 1.25 , cex.main = 1.25 , cex.
axis = 1.25 , cex = 0.5, col = "blue")

53 lines(log.data.ordered ,log(true.sf), col = "blue")
54 points (log.data.ordered , log( empirical .sf), col = "black", cex=

0.5)
55 legend (" bottomleft ", col=c("blue", "black"), lty=c(1,NA), pch = c

(1 ,1) , legend =c(" Pareto distribution "," observations "))
56 }
57
58 ### Apply the function for the Hill plot with the desired

parameters
59 hill.plot. function (n=300 , theta =10, alpha =2, seed1 =100)
60
61 ### Apply the function for the log -log plot with the desired

parameters
62 log.log.plot. function (n=300 , theta =10, alpha =2, seed1 =100)

Solution 7.2 Approximations for Compound Distributions

Note that if Y ∼ Γ(γ = 100, c = 1
10 ), then

E[Y ] = γ

c
= 100

1/10 = 1’000,

E[Y 2] = γ(γ + 1)
c2 = 100 · 101

1/100 = 1’010’000 and

E[Y 3] = γ(γ + 1)(γ + 2)
c3 = 100 · 101 · 102

1/1000 = 1’030’200’000.

Let MY denote the moment generating function of Y . According to formula (1.3) of the lecture
notes, we have

M ′′′Y (0) = d3

dr3MY (r)
∣∣∣∣
r=0

= E[Y 3].

For the total claim amount S, we can use Proposition 2.11 of the lecture notes to get

E[S] = λvE[Y ] = 1’000 · 1’000 = 1’000’000,
Var(S) = λvE[Y 2] = 1’000 · 1’010’000 = 1’010’000’000 and
MS(r) = exp{λv[MY (r)− 1]}.

In order to get the skewness ςS of S, which we will need for the translated gamma and the log-normal
approximations, we can use the third equation given in the formulas (1.5) of the lecture notes:

ςS ·Var(S)3/2 = d3

dr3 logMS(r)
∣∣∣∣
r=0

= λv
d3

dr3MY (r)
∣∣∣∣
r=0

= λvM ′′′Y (0) = λvE[Y 3],

from which we can conclude that

ςS = λvE[Y 3]
(λvE[Y 2])3/2 = E[Y 3]√

λvE[Y 2]3/2
= 1’030’200’000√

1’000(1’010’000)3/2
≈ 0.0321.
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Let FS denote the distribution function of S. Then, since FS is continuous and strictly increasing,
the quantiles q0.95 and q0.99 can be calculated as

q0.95 = F−1
S (0.95) and q0.99 = F−1

S (0.99).

(a) According to Section 4.1.1 of the lecture notes, the normal approximation is given by

FS(x) ≈ Φ
(
x− λvE[Y ]√
λvE[Y 2]

)
,

for all x ∈ R, where Φ is the standard Gaussian distribution function. For all α ∈ (0, 1) we
then have

F−1
S (α) = λvE[Y ] +

√
λvE[Y 2] · Φ−1(α)

= 1’000 · 1’000 +
√

1’000 · 1’010’000 · Φ−1(α)
≈ 1’000’000 + 31’780.5 · Φ−1(α).

In particular, we get

q0.95 = F−1
S (0.95) ≈ 1’000’000+31’780.5·Φ−1(0.95) ≈ 1’000’000+31’780.5·1.645 = 1’052’279

and

q0.99 = F−1
S (0.99) ≈ 1’000’000+31’780.5·Φ−1(0.99) ≈ 1’000’000+31’780.5·2.325 = 1’073’890.

Note that the normal approximation also allows for negative claims S, which under our model
assumption is excluded. The probability for negative claims S in the normal approximation
can be calculated as

FS(0) ≈ Φ
(

0− λvE[Y ]√
λvE[Y 2]

)
≈ Φ

(
−1’000’000

31’780.5

)
≈ Φ(−31.5) ≈ 4.34 · 10−218,

which of course is positive, but very close to 0.

(b) According to Section 4.1.2 of the lecture notes, in the translated gamma approximation we
model S by the random variable

X = k + Z,

where k ∈ R and Z ∼ Γ(γ̃, c̃). The three parameters k, γ̃ and c̃ can be determined by solving
the equations

E[X] = E[S], Var(X) = Var(S) and ςX = ςS , (1)

where ςX is the skewness parameter of X. Since Z ∼ Γ(γ̃, c̃), we can use the results given in
Section 3.2.1 of the lecture notes to calculate

E[X] = E[k + Z] = k + E[Z] = k + γ̃

c̃
,

Var(X) = Var(k + Z) = Var(Z) = γ̃

c̃2 and

ςX =
E
[
(X − E[X])3]
Var(X)3/2 =

E
[
(k + Z − E[k + Z])3]
Var(k + Z)3/2 =

E
[
(Z − E[Z])3]
Var(Z)3/2 = ςZ = 2√

γ̃
.
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Using the equations given in (1), we get

2√
γ̃

= ςS ⇐⇒ γ̃ = 4
ς2
S

≈ 3’883,

γ̃

c̃2 = Var(S) ⇐⇒ c̃ =

√
γ̃

Var(S) ≈ 0.002 and

k + γ̃

c̃
= E[S] ⇐⇒ k = E[S]− γ̃

c̃
= E[S]−

√
γ̃Var(S) ≈ −980’392.

If we write FZ for the distribution function of Z ∼ Γ(γ̃ ≈ 3’883, c̃ ≈ 0.002), we get using the
translated gamma approximation

FS(x) = P[S ≤ x] ≈ P[X ≤ x] = P[k + Z ≤ x] = P[Z ≤ x− k] = FZ(x− k),

for all x ∈ R. Now, for all α ∈ (0, 1), we have

F−1
S (α) ≈ k + F−1

Z (α)

In particular, we get

q0.95 = F−1
S (0.95) ≈ k + F−1

Z (0.95) ≈ −980’392 + 2’032’955 = 1’052’563

and
q0.99 = F−1

S (0.99) ≈ k + F−1
Z (0.99) ≈ −980’392 + 2’055’074 = 1’074’682.

Note that since k < 0, the translated gamma approximation in this example also allows
for negative claims S, which under our model assumption is excluded. The probability for
negative claims S can be calculated as

FS(0) ≈ FZ(0− k) ≈ FZ(980’392) ≈ 4.87 · 10−320,

which is basically 0.

(c) According to Section 4.1.2 of the lecture notes, in the translated log-normal approximation
we model S by the random variable

X = k + Z,

where k ∈ R and Z ∼ LN(µ, σ2). Similarly as in part (b), the three parameters k, µ and σ2

can be determined by solving the equations

E[X] = E[S], Var(X) = Var(S) and ςX = ςS . (2)

Since Z ∼ LN(µ, σ2), we can use the results given in Section 3.2.3 of the lecture notes to
calculate

E[X] = E[k + Z] = k + E[Z] = k + exp
{
µ+ σ2/2

}
,

Var(X) = Var(k + Z) = Var(Z) = exp
{

2µ+ σ2} (exp
{
σ2}− 1

)
and

ςX = ςZ =
(
exp

{
σ2}+ 2

) (
exp

{
σ2}− 1

)1/2
.

Using the third equation in (2), we get(
exp

{
σ2}+ 2

) (
exp

{
σ2}− 1

)1/2 = ςS ≈ 0.0321 ⇐⇒ σ2 ≈ 0.00011444,

Updated: November 6, 2018 5 / 13



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2018 Solution sheet 7

which was found using a computer software. Using the second equation in (2), we get

exp
{

2µ+ σ2} (exp
{
σ2}− 1

)
= Var(S) ⇐⇒ µ = 1

2

(
log
[(

exp
{
σ2}− 1

)−1 Var(S)
]
− σ2

)
,

which implies
µ ≈ 14.90425.

Finally, using the first equation in (2), we get

k + exp
{
µ+ σ2/2

}
= E[S] ⇐⇒ k = E[S]− exp

{
µ+ σ2/2

}
≈ −1’970’704.

If we write FW for the distribution function of

W = logZ ∼ N (µ ≈ 14.90425, σ2 ≈ 0.00011444),

we get using the translated log-normal approximation

FS(x) = P[S ≤ x] ≈ P[X ≤ x] = P[k + Z ≤ x] = P[logZ ≤ log(x− k)] = FW (log[x− k]),

for all x ∈ R. For all α ∈ (0, 1) we then have

F−1
S (α) ≈ k + exp

{
F−1

W (α)
}
.

In particular, we get

q0.95 = F−1
S (0.95) ≈ k + exp

{
F−1

W (0.95)
}
≈ −1’970’704 + 3’023’266 = 1’052’562

and

q0.99 = F−1
S (0.99) ≈ k + exp

{
F−1

W (0.99)
}
≈ −1’970’704 + 3’045’387 = 1’074’684.

Note that since k < 0, the translated log-normal approximation in this example also allows
for negative claims S, which under our model assumption is excluded. The probability for
negative claims S can be calculated as

FS(0) ≈ FZ(0− k) = FW (log[−k]) ≈ FW (log 1’970’704) ≈ 4.44 · 10−322,

which is basically 0.

(d) We observe that with all the three approximations applied in parts (a) - (c) we get almost the
same results. In particular, the normal approximation does not provide estimates that deviate
significantly from the ones we get using the translated gamma and the translated log-normal
approximations. This is due to the fact that λv = 1’000 is large enough and the gamma
distribution assumed for the claim sizes is not a heavy tailed distribution. Moreover, the
skewness ςS = 0.0321 of S is rather small, hence the normal approximation is a valid model in
this example. Note that in all the three approximations we allow for negative claims S, which
actually should not be possible under our model assumptions. However, the probability to
observe a negative claim S is vanishingly small, in all the three approximations.
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Solution 7.3 Monte Carlo Simulations

An example of a possible R code for both parts (a) and (b) is given below.

(a) We assume that for this comparably simple problem where no heavy tails are involved 100’000
Monte Carlo simulations are enough to provide an empirical distribution function of S which is
close to the true distribution function of S. In Figure 2 we compare the empirical distribution
function of S resulting from 100’000 Monte Carlo simulations to the approximate distribution
functions when using the normal (left), the translated gamma (middle) and the translated
log-normal (right) approximation. From these plots we cannot spot any differences between
the various distribution functions.
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Figure 2: Comparison of the empirical distribution function of S resulting from 100’000 Monte
Carlo simulations to the approximate distribution functions when using the normal (left), the
translated gamma (middle) and the translated log-normal (right) approximation.

In Figure 3 we consider the log-log plot of the 100’000 Monte Carlo simulations of S and
compare it to the normal (left), the translated gamma (middle) and the translated log-normal
(right) approximation. We observe that all three approximations have a rather good fit to
the tail of the distribution of S, but the translated gamma and the translated log-normal
approximation seem slightly more accurate than the normal approximation. We conclude
that in the absence of heavy tailed distributions the translated gamma and the translated
log-normal approximation are very convincing in this example. Moreover, the skewness of S
is small enough (ςS ≈ 0.0321, see above) and the expected number of claims large enough
(λv = 1’000, see Exercise 7.2) for the normal approximation to be a valid approximation, too.
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Figure 3: Log-log plot of the 100’000 Monte Carlo simulations of S compared to the normal (left),
the translated gamma (middle) and the translated log-normal (right) approximation.
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(b) Replicating 10’000 Monte Carlo simulations 100 times already requires some time. This is
also the reason why we chose 10’000 as maximum number of simulations and not 100’000 as in
part (a). Note that every single time we use Monte Carlo simulations to derive quantities like
for example the quantiles q0.95 and q0.99, we get different results. This is something one needs
to be aware of, and it is in contrast to the normal, the translated gamma and the translated
log-normal approximation. In Figure 4 we show the densities of the 100 quantiles q0.95 (left)
and q0.99 (right) resulting from replicating the n = 100, 1’000, 10’000 Monte Carlo simulations
100 times. We see that increasing the number of simulations n for every replication, the
uncertainty regarding the quantiles q0.95 and q0.99 is reduced.
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Figure 4: Densities of the 100 quantiles q0.95 (left) and q0.99 (right) resulting from replicating the
n = 100, 1’000, 10’000 Monte Carlo simulations 100 times.

q0.95 q0.99
Monte Carlo smallest largest smallest largest
n = 100 1’035’018 1’069’209 1’053’719 1’126’533
n = 1’000 1’047’186 1’057’829 1’066’770 1’084’902
n = 10’000 1’050’955 1’054’282 1’072’045 1’077’195
Approximations
normal 1’052’279 1’073’890
translated gamma 1’052’563 1’074’682
translated log-normal 1’052’562 1’074’684

Table 1: Smallest and largest observed values of the quantiles q0.95 and q0.99 among the 100
replications of the n = 100, 1’000, 10’000 Monte Carlo simulations together with the values of
the quantiles q0.95 and q0.99 resulting from the normal, the translated gamma and the translated
log-normal approximation.

One can reach the same conclusions from Table 1, where we give the smallest and the
largest observed values of the quantiles q0.95 and q0.99 among the 100 replications of the
n = 100, 1’000, 10’000 Monte Carlo simulations. Moreover, we also give the values of the
quantiles q0.95 and q0.99 resulting from the normal, the translated gamma and the translated
log-normal approximation, see Exercise 7.2. We see that the quantiles resulting from the
approximations are always between the smallest and the largest observed value resulting from
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the Monte Carlo simulations. Of course, one can argue that we could choose the number of
simulations n large enough such that the results do not vary considerably anymore. However,
a too high number of simulations n will lead to an excessive computation time. This is
especially true if one considers heavy tailed distributions. Therefore, one is often inclined
to use other algorithms for compound distributions, such as the Panjer algorithm and fast
Fourier transforms.

1 ### Function that creates Monte Carlo simulations for the total
claim amount S

2 compound . poisson . distribution <- Vectorize ( function (n, lambdav ,
shape , rate){

3 number .of. claims <- rpois(n = n, lambda = lambdav )
4 sum( rgamma (n = number .of.claims , shape = shape , rate = rate))
5 },"n")
6
7
8 ### a)
9

10 ### n Monte Carlo simulations of the total claim amount S
11 n <- 100000
12 lambdav <- 1000
13 shape <- 100
14 rate <- 1/10
15 set.seed (100)
16 claim. amounts <- compound . poisson . distribution (n = rep (1,n),

lambdav = lambdav , shape = shape , rate = rate)
17
18
19 ### Normal approximation
20 mu <- lambdav *shape/rate
21 sigma <- sqrt( lambdav *shape*(shape +1)/(rate ^2))
22
23 ### Check the normal approximation
24 par(mar=c(5.1 , 4.4, 4.1, 2.1))
25 plot(claim. amounts [order(claim. amounts )], 1:n/(n+1) , xlim=c(min

(claim. amounts ),max(claim. amounts )), type="l", col="red",
main=" Empirical distribution function ", xlab=" Sampled values
", ylab=" Empirical distribution function ", cex.lab =1.5 , cex.
main =1.5 , cex.axis =1.5 , lwd =2)

26 lines(claim. amounts [order(claim. amounts )], pnorm (( claim. amounts
[order(claim. amounts )]),mu ,sigma), lwd =1)

27 legend (" bottomright ", lty =1, lwd =2, col=c("red","black"),
legend =c("Monte Carlo"," normal approx . "), cex =1)

28 plot(log(claim. amounts [order(claim. amounts )]), log (1 -1:n/(n+1))
, xlim=c(min(log(claim. amounts )),max(log(claim. amounts ))),
ylim=c(min(log (1-n/(n+1)),log (1- pnorm (( claim. amounts [order(
claim. amounts )]),mu ,sigma))) ,0), type="l", col="red", main="
Log -log plot", xlab="log( sampled values )", ylab="log (1-
empirical distribution function )", cex.lab =1.5 , cex.main
=1.5 , cex.axis =1.5 , lwd =2)

29 lines(log(claim. amounts [order(claim. amounts )]), log (1- pnorm ((
claim. amounts [order(claim. amounts )]),mu ,sigma)), col="black"
, lwd =1)
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30 legend (" bottomleft ", lty =1, lwd =2, col=c("red","black"), legend
=c("Monte Carlo"," normal approx . "), cex =1)

31
32
33 ### Translated gamma approximation
34 skews <- ( lambdav *shape*(shape +1)*(shape +2)/rate ^3)/( lambdav *

shape*(shape +1)/rate ^2) ^(3/2)
35 shape2 <- 4/skews ^2
36 rate2 <- sqrt( shape2 /( lambdav *shape*(shape +1)/rate ^2))
37 k <- lambdav *shape/rate - shape2 /rate2
38
39 ### Check of the translated gamma approximation
40 plot(claim. amounts [order(claim. amounts )], 1:n/(n+1) , xlim=c(min

(claim. amounts ),max(claim. amounts )), type="l", col="red",
main=" Empirical distribution function ", xlab=" Sampled values
", ylab=" Empirical distribution function ", cex.lab =1.5 , cex.
main =1.5 , cex.axis =1.5 , lwd =2)

41 lines(claim. amounts [order(claim. amounts )], pgamma (( claim.
amounts [order(claim. amounts )])-k,shape=shape2 ,rate=rate2),
lwd =1)

42 legend (" bottomright ", lty =1, lwd =2, col=c("red","black"),
legend =c("Monte Carlo"," transl . gamma "), cex =1)

43 plot(log(claim. amounts [order(claim. amounts )]), log (1 -1:n/(n+1))
, xlim=c(min(log(claim. amounts )),max(log(claim. amounts ))),
ylim=c(min(log (1-n/(n+1)),log (1- pgamma (( claim. amounts [order(
claim. amounts )])-k,shape=shape2 ,rate=rate2))) ,0), type="l",
col="red", main="Log -log plot", xlab="log( sampled values )",
ylab="log (1- empirical distribution function )", cex.lab =1.5 ,
cex.main =1.5 , cex.axis =1.5 , lwd =2)

44 lines(log(claim. amounts [order(claim. amounts )]), log (1- pgamma ((
claim. amounts [order(claim. amounts )])-k,shape=shape2 ,rate=
rate2)), lwd =1)

45 legend (" bottomleft ", lty =1, lwd =2, col=c("red","black"), legend
=c("Monte Carlo"," transl . gamma "), cex =1)

46
47
48 ### Translated log - normal approximation
49 sigma. squared <- 0.00011444
50 mu2 <- 1/2*(log (( exp(sigma. squared ) -1)^( -1)* lambdav *shape*(

shape +1)/rate ^2) -sigma. squared )
51 k2 <- lambdav *shape/rate -exp(mu2+sigma. squared /2)
52
53 ### Check of the translated log - normal approximation
54 plot(claim. amounts [order(claim. amounts )], 1:n/(n+1) , xlim=c(min

(claim. amounts ),max(claim. amounts )), type="l", col="red",
main=" Empirical distribution function ", xlab=" Sampled values
", ylab=" Empirical distribution function ", cex.lab =1.5 , cex.
main =1.5 , cex.axis =1.5 , lwd =2)

55 lines(claim. amounts [order(claim. amounts )], pnorm(log (( claim.
amounts [order(claim. amounts )])-k2),mu2 ,sqrt(sigma. squared )),

lwd =1)
56 legend (" bottomright ", lty =1, lwd =2, col=c("red","black"),
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legend =c("Monte Carlo"," transl . log - normal "), cex =1)
57 plot(log(claim. amounts [order(claim. amounts )]), log (1 -1:n/(n+1))

, xlim=c(min(log(claim. amounts )),max(log(claim. amounts ))),
ylim=c(min(log (1-n/(n+1)),log (1- pnorm(log (( claim. amounts [
order(claim. amounts )])-k2),mu2 ,sqrt(sigma. squared )))) ,0),
type="l", col="red", main="Log -log plot", xlab="log( sampled
values )", ylab="log (1- empirical distribution function )", cex
.lab =1.5 , cex.main =1.5 , cex.axis =1.5 , lwd =2)

58 lines(log(claim. amounts [order(claim. amounts )]), log (1- pnorm(log
(( claim. amounts [order(claim. amounts )])-k2),mu2 ,sqrt(sigma.
squared ))), lwd =1)

59 legend (" bottomleft ", lty =1, lwd =2, col=c("red","black"), legend
=c("Monte Carlo"," transl . log - normal "), cex =1)

60
61
62
63 ### b)
64
65 ### k replications of n Monte Carlo Simulations of S
66 k <- 100
67 n <- 100
68 set.seed (100)
69 claim. amounts .1 <- array( compound . poisson . distribution (n = rep

(1,k*n), lambdav = 1000 , shape = 100, rate = 1/10) , dim = c(
n,k))

70 n <- 1000
71 set.seed (200)
72 claim. amounts .2 <- array( compound . poisson . distribution (n = rep

(1,k*n), lambdav = 1000 , shape = 100, rate = 1/10) , dim = c(
n,k))

73 n <- 10000
74 set.seed (300)
75 claim. amounts .3 <- array( compound . poisson . distribution (n = rep

(1,k*n), lambdav = 1000 , shape = 100, rate = 1/10) , dim = c(
n,k))

76
77 ### Function that calculates the alpha - quantiles of S on the

basis of k replications of n Monte Carlo simulations of S
78 quantiles .monte.carlo <- function (claim.amounts , alpha){
79 n <- nrow(claim. amounts )
80 claim. amounts . sorted <- apply(claim.amounts , 2, sort)
81 quantiles .alpha <- claim. amounts . sorted [floor(alpha*n)+1,]
82 }
83
84 ### 0.95 - quantiles
85 quantiles .1 <- quantiles .monte.carlo(claim. amounts = claim.

amounts .1, alpha = 0.95)
86 quantiles .2 <- quantiles .monte.carlo(claim. amounts = claim.

amounts .2, alpha = 0.95)
87 quantiles .3 <- quantiles .monte.carlo(claim. amounts = claim.

amounts .3, alpha = 0.95)
88
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89 ### Minimum / maximum values observed
90 min( quantiles .1)
91 max( quantiles .1)
92 min( quantiles .2)
93 max( quantiles .2)
94 min( quantiles .3)
95 max( quantiles .3)
96
97 ### Density
98 ymax <- max( density ( quantiles .1)$y, density ( quantiles .2)$y,

density ( quantiles .3)$y)
99 plot( density ( quantiles .1) , col = "black", ylim = c(0, ymax),

main = " Density of 0.95 - quantiles of S", xlab = "0.95 -
quantiles of S (Monte Carlo)", cex.lab =1.25 , cex.main =1.25 ,
cex.axis =1.25 , lwd =2)

100 lines( density ( quantiles .2) , col = "blue", lwd = 2)
101 lines( density ( quantiles .3) , col = "red", lwd = 2)
102 legend (" topleft ", col=c("black", "blue", "red"), lwd = 2, lty =

1, legend =c("n = 100","n = 1 ’000","n = 10 ’000"))
103
104
105 ### 0.99 - quantiles
106 quantiles .1 <- quantiles .monte.carlo(claim. amounts = claim.

amounts .1, alpha = 0.99)
107 quantiles .2 <- quantiles .monte.carlo(claim. amounts = claim.

amounts .2, alpha = 0.99)
108 quantiles .3 <- quantiles .monte.carlo(claim. amounts = claim.

amounts .3, alpha = 0.99)
109
110 ### Minimum / maximum values observed
111 min( quantiles .1)
112 max( quantiles .1)
113 min( quantiles .2)
114 max( quantiles .2)
115 min( quantiles .3)
116 max( quantiles .3)
117
118 ### Density
119 ymax <- max( density ( quantiles .1)$y, density ( quantiles .2)$y,

density ( quantiles .3)$y)
120 plot( density ( quantiles .1) , col = "black", ylim = c(0, ymax),

main = " Density of 0.99 - quantiles of S", xlab = "0.99 -
quantiles of S (Monte Carlo)", cex.lab =1.25 , cex.main =1.25 ,
cex.axis =1.25 , lwd =2)

121 lines( density ( quantiles .2) , col = "blue", lwd = 2)
122 lines( density ( quantiles .3) , col = "red", lwd = 2)
123 legend (" topright ", col=c("black", "blue", "red"), lwd = 2, lty

= 1, legend =c("n = 100","n = 1 ’000","n = 10 ’000"))
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Solution 7.4 Akaike Information Criterion and Bayesian Information Criterion

(a) By definition, the MLEs
(
γ̂MLE, ĉMLE) maximize the log-likelihood function `Y. In particular,

we have
`Y
(
γ̂MLE, ĉMLE) ≥ `Y (γ, c) ,

for all (γ, c) ∈ R+ × R+.
If we write d(MM) and d(MLE) for the number of estimated parameters in the method of
moments model and in the MLE model, respectively, we have d(MM) = d(MLE) = 2. The AIC
value AIC(MM) of the method of moments model and the AIC value AIC(MLE) of the MLE
model are then given by

AIC(MM) = −2`Y
(
γ̂MM, ĉMM)+ 2d(MM) = −2 · 1’264.013 + 2 · 2 = −2’524.026 and

AIC(MLE) = −2`Y
(
γ̂MLE, ĉMLE)+ 2d(MLE) = −2 · 1’264.171 + 2 · 2 = −2’524.342.

According to the AIC, the model with the smallest AIC value should be preferred. Since
AIC(MM) > AIC(MLE), we choose the MLE fit.

(b) If we write d(gam) and d(exp) for the number of estimated parameters in the gamma model
and in the exponential model, respectively, we have d(gam) = 2 and d(exp) = 1. The AIC value
AIC(gam) of the gamma model and the AIC value AIC(exp) of the exponential model are then
given by

AIC(gam) = −2`(gam)
Y

(
γ̂MLE, ĉMLE)+ 2d(gam) = −2 · 1’264.171 + 2 · 2 = −2’524.342 and

AIC(exp) = −2`(exp)
Y

(
ĉMLE)+ 2d(exp) = −2 · 1’264.169 + 2 · 1 = −2’526.338.

Since AIC(gam) > AIC(exp), we choose the exponential model.
The BIC value BIC(gam) of the gamma model and the BIC value BIC(exp) of the exponential
model are given by

BIC(gam) = −2`(gam)
Y

(
γ̂MLE, ĉMLE)+ d(gam) · log 1’000

= −2 · 1’264.171 + 2 · log 1’000
≈ −2’514.53

and

BIC(exp) = −2`(exp)
Y

(
ĉMLE)+ d(exp) · log 1’000

= −2 · 1’264.169 + log 1’000
≈ −2’521.43.

According to the BIC, the model with the smallest BIC value should be preferred. Since
BIC(gam) > BIC(exp), we choose the exponential model. Note that the gamma model gives
the better in-sample fit than the exponential model. But if we adjust this in-sample fit by the
number of parameters used, we conclude that the exponential model probably has the better
out-of-sample performance (better predictive power).
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