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Solution 8.1 Panjer Algorithm

For the expected yearly claim amount π0 we have

π0 = E[S] = E[N ]E[Y1] = 1 · E[k + Z] = k + E[Z] = k + exp
{
µ+ σ2

2

}
≈ 4123.872.

Let Y +
i denote the discretized claim sizes using a span of s = 10, where we put all the probability

mass to the upper end of the intervals. Note that k = 10s. If we write gl = P[Y +
1 = sl] for all l ∈ N,

then we have
g1 = g2 = · · · = g10 = 0,

since P[Y +
1 ≤ 10s] = P[k + Z ≤ 10s] = P[Z ≤ 0] = 0. For all l ≥ 11 we get

gl = P[Y +
1 = sl]

= P[Y +
1 = k + s(l − 10)]

= P[k + s(l − 11) < Y1 ≤ k + s(l − 10)]
= P[Y1 ≤ k + s(l − 10)]− P[Y1 ≤ k + s(l − 11)]
= P[Z ≤ s(l − 10)]− P[Z ≤ s(l − 11)]
= P [logZ ≤ log(s[l − 10])]− P [logZ ≤ log(s[l − 11])]

= Φ
(

log[s(l − 10)]− µ
σ

)
− Φ

(
log[s(l − 11)]− µ

σ

)
,

where Φ is the distribution function of the standard Gaussian distribution and where we define
log 0 = −∞. From now on we replace the claim sizes Yi with the discretized claim sizes Y +

i . By a
slight abuse of notation, we still write S for the yearly claim amount that changed to

S =
N∑
i=1

Y +
i .

Note that N ∼ Poi(1) has a Panjer distribution with parameters a = 0 and b = 1, see Corollary 4.8
of the lecture notes. Applying the Panjer algorithm given in Theorem 4.9 of the lecture notes, we
have for r ∈ N0

fr
def.= P[S = sr] =

{
P[N = 0], for r = 0,∑r
l=1

l
rglfr−l, for r > 0.

Since the yearly amount that the client has to pay by himself is given by

Sins = min{S, d}+ min{α · (S − d)+,M} = min{S, d}+ α ·min
{

(S − d)+,
M

α

}
,

M/α = 7’000 and the maximal possible franchise is 2’500, we have to apply the Panjer algorithm
until we reach P[S = 9’500] = f950. Here we limit ourselves to determine the values of f0, . . . , f12
to illustrate how the algorithm works. We have

f0 = P[N = 0] = e−1 ≈ 0.37
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and
f1 = f2 = · · · = f10 = 0,

since g1 = g2 = · · · = g10 = 0. For r = 11 and r = 12 we get

f11 =
11∑
l=1

l

11glf11−l = g11f0 =
[
Φ
(

log s− µ
σ

)
− Φ

(
log 0− µ

σ

)]
e−1 ≈ 7.089 · 10−9

and

f12 =
12∑
l=1

l

12glf12−l = g12f0 =
[
Φ
(

log 2s− µ
σ

)
− Φ

(
log s− µ

σ

)]
e−1 ≈ 2.786 · 10−7.

Using the discretized claim sizes, the yearly expected amount πins paid by the customer is given by

πins = E[Sins] = E [min{S, d}] + αE
[
min

{
(S − d)+,

M

α

}]
,

where we have

E [min{S, d}] =
d/s∑
r=0

frsr + d

1−
d/s∑
r=0

fr

 = d+
d/s∑
r=0

fr(sr − d)

and

E
[
min

{
(S − d)+,

M

α

}]
=
d/s+M/sα∑
r=d/s+1

fr(sr − d) + M

α

1−
d/s+M/sα∑

r=0
fr


= M

α
+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr.

Therefore, we get

πins = d+
d/s∑
r=0

fr(sr − d) + α

M
α

+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr


= d+M +

d/s∑
r=0

fr(sr − d−M) +
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

)
.

Finally, if the customer has chosen franchise d, then the monthly pure risk premium π is given by

π = π0 − πins

12

= 1
12

k + exp
{
µ+ σ2

2

}
− d−M −

d/s∑
r=0

fr(sr − d−M)−
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

) .
In the end, we get the following monthly pure risk premiums π for the different franchises d:

franchise d 300 500 1’000 1’500 2’000 2’500
monthly pure risk premium π 307 297 274 253 233 216

Table 1: Monthly pure risk premiums π for the different franchises d.
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Figure 1: Plot of the monthly pure risk premium π as a function of the franchise d.

More generally, the monthly pure risk premium π as a function of the franchise d, which is allowed
to vary between 300 CHF and 2’500 CHF, is given in Figure 1. Note that these monthly premiums
only represent the pure risk premiums. In order get the premiums that the customer has to pay
in the end, we would need to add an appropriate risk-loading, which may vary between different
health insurance companies. The above plot can be created by the R code given below, where we
calculated the premiums using two different discretizations of the claim sizes: in one we put the
probability mass to the upper end of the intervals and in the other to the lower end of the intervals.
However, the resulting premiums for these two versions are basically the same.

1 ### Define the function KK_ premium with the variables :
2 ### lambda = mean number of claims
3 ### mu = mean parameter of log - normal distribution
4 ### sigma2 = variance parameter of log - normal distribution
5 ### span = span size used in the Panjer algorithm
6 ### shift = shift of the translated log - normal distribution
7 KK_ premium <- function (lambda , mu , sigma2 , span , shift){
8
9 ### We will calculate the distribution of S until M (M = 2500 +

7000)
10 M <- 9500
11
12 ### Number of steps
13 m <- floor(M/span)
14
15 ### We won ’t have any mass until we reach shift , which happens at

the k0 -th step
16 k0 <- shift/span
17
18 ### Initialize array where mass is put to the lower end of the

interval
19 g_min <- array (0, dim=c(m+1 ,1))
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20
21 ### Initialize array where mass is put to the upper end of the

interval
22 g_max <- array (0, dim=c(m+1 ,1))
23
24 ### Discretize the log - normal distribution putting the mass to

the lower end of the interval
25 for (k in (k0 +1) :(m+1)){g_min[k ,1] <- pnorm(log ((k-k0)*span),

mean=mu , sd=sqrt( sigma2 ))-pnorm(log ((k-k0 -1)*span), mean=mu ,
sd=sqrt( sigma2 ))}

26
27 ### Discretize the log - normal distribution putting the mass to

the upper end of the interval
28 g_max [2:(m+1) ,1] <- g_min [1:m ,1]
29
30 ### Initialize matrix , where we will store the probability

distribution of S
31 f1 <- matrix (0, nrow=m+1, ncol =3)
32
33 ### Store the probability of getting zero claims (in both lower

bound and upper bound)
34 f1 [1 ,1] <- exp(- lambda *(1-g_min [1 ,1]))
35 f1 [1 ,2] <- exp(- lambda *(1-g_max [1 ,1]))
36
37 ### Calculate the values "l * g_{l}" of the discretized claim

sizes (lower bound and upper bound), we need these values in
the Panjer algorithm

38 h1 <- matrix (0, nrow=m, ncol =3)
39 for (i in 1:m){
40 h1[i ,1] <- g_min[i+1 ,1]*(i+1)
41 h1[i ,2] <- g_max[i+1 ,1]*(i+1)
42 }
43
44 ### Panjer algorithm (note that in the Poisson case we have a = 0

and b = lambda *v, which is just lambda here)
45 for (r in 1:m){
46 f1[r+1 ,1] <- lambda /r*(t(f1 [1:r ,1])%*%h1[r:1 ,1])
47 f1[r+1 ,2] <- lambda /r*(t(f1 [1:r ,2])%*%h1[r:1 ,2])
48 f1[r+1 ,3] <- r * span
49 }
50
51 ### Maximal and minimal franchise
52 m1 <- 2500
53 m0 <- 300
54
55 ### Number of iterations needed to get to m1 and m0
56 i1 <- floor(m1/span +1)
57 i0 <- floor(m0/span +1)
58
59 ### Calculate the part that the insured pays by himself
60 franchise <- array(NA , c(i1 , 3))
61 for (i in i0:i1){
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62 franchise [i ,1] <- f1[i ,3] ### this represents the franchise
63 franchise [i ,2] <- sum(f1 [1:i ,1]*f1 [1:i ,3]) + f1[i ,3] * (1- sum(

f1 [1:i ,1]))
64 franchise [i ,2] <- franchise [i ,2] + sum(f1[(i+1):floor(i+7000 /

span) ,1]*f1 [2: floor (7000/span +1) ,3])*0.1 + 700 * (1- sum(f1
[1: floor(i+7000/span) ,1]))

65 franchise [i ,3] <- sum(f1 [1:i ,2]*f1 [1:i ,3]) + f1[i ,3] * (1- sum(
f1 [1:i ,2]))

66 franchise [i ,3] <- franchise [i ,3] + sum(f1[(i+1):floor(i+7000 /
span) ,2]*f1 [2: floor (7000/span +1) ,3])*0.1 + 700 * (1- sum(f1
[1: floor(i+7000/span) ,2]))

67 }
68
69 ### Calculate the price of the monthly premium
70 price <- array(NA , c(i1 , 3))
71 price [,1] <- franchise [,1] ### this represents the franchise
72 price [ ,2:3] <- ( lambda *(exp(mu+ sigma2 /2)+shift) - franchise

[ ,2:3])/12
73 price
74 }
75
76 ### Load the add -on packages stats and MASS
77 require (stats)
78 require (MASS)
79
80 ### Determine values for the input parameters of the function KK_

premium
81 lambda <- 1
82 mu <- 7.8
83 sigma2 <- 1
84 span <- 10
85 shift <- 100
86
87 ### The coefficient of variation of the translated log - normal

distribution is given by
88 exp(mu+ sigma2 /2)*sqrt(exp( sigma2 ) -1)/(shift+exp(mu+ sigma2 /2))
89
90 ### Run the function KK_ premium
91 price <- KK_ premium (lambda , mu , sigma2 , span , shift)
92
93 ### Plot the monthly pure risk premium as a function of the

franchise
94 plot(x=price [,1], y=price [,2], lwd =2, col="blue", type=’l’, ylab="

Monthly pure risk premium ", xlab=" Franchise ", main=" Monthly pure
risk premium ", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)

95 lines(x=price [,1], y=price [,2], lwd =1, col="blue")
96 points (x=c(300 ,500 , 1000 , 1500 , 2000 , 2500) , y=price[c(300 ,500 ,

1000 , 1500 , 2000 , 2500)/span +1,3], pch =19, col=" orange ")
97 lines(x=c(300 ,300) , y=c(0, price [300/span +1 ,3]) ,lty =3, lwd =1.5 , col=

" darkgray ")
98 lines(x=c(500 ,500) , y=c(0, price [500/span +1 ,3]) ,lty =3, lwd =1.5 , col=

" darkgray ")
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99 lines(x=c (1000 ,1000) , y=c(0, price [1000/span +1 ,3]) ,lty =3, lwd =1.5 ,
col=" darkgray ")

100 lines(x=c (1500 ,1500) , y=c(0, price [1500/span +1 ,3]) ,lty =3, lwd =1.5 ,
col=" darkgray ")

101 lines(x=c (2000 ,2000) , y=c(0, price [2000/span +1 ,3]) ,lty =3, lwd =1.5 ,
col=" darkgray ")

102 lines(x=c (2500 ,2500) , y=c(0, price [2500/span +1 ,3]) ,lty =3, lwd =1.5 ,
col=" darkgray ")

103
104 ### Give the monthly pure risk premiums for the six franchises

listed on the exercise sheet
105 round(price[floor(c(300 , 500, 1000 , 1500 , 2000 , 2500)/span +1) ,2])
106 round(price[floor(c(300 , 500, 1000 , 1500 , 2000 , 2500)/span +1) ,3])

Solution 8.2 Fast Fourier Transform

Assume that Ỹ follows the claim size distribution given on the exercise sheet. Let Y denote the
discretized version of Ỹ that takes values in N0. More precisely, we shift the probability masses of
Ỹ to the right and define

P[Y = 0] = 0 and P[Y = l] = P
[
Ỹ ≤ l

]
− P

[
Ỹ ≤ l − 1

]
,

for all l ∈ N. By a slight abuse of notation, we still write S for the compound Poisson distribution
with discrete claim sizes distributed as Y . In particular, also S takes values in N0. We define

gl = P[Y = l] and fl = P[S = l],

for all l ∈ N0. We choose a threshold of n = 2’000’000, i.e. we determine the distribution function
of S up to n− 1. Note that n is chosen sufficiently high such that we approximately have

P [Y > n− 1] ≈ 0. (1)

We define A = {0, . . . , n− 1} and calculate the discrete Fourier transform (ĝz)z∈A of (gl)l∈A by

ĝz =
n−1∑
l=0

gl exp
{

2πizl
n

}
, (2)

for all z ∈ A. Due to (1), we approximately have

ĝz ≈ E
[
exp

{
2πizY

n

}]
= MY

(
2πi z

n

)
,

for all z ∈ A, where MY denotes the moment generating function of Y . Note that we use an
extended version of the moment generating function also allowing for complex numbers. If MS

denotes the moment generating function of S, then, according to Proposition 2.11 of the lecture
notes (again extended to complex numbers), we have

MS

(
2πi z

n

)
= exp

{
λv
[
MY

(
2πi z

n

)
− 1
]}
≈ exp {λv (ĝz − 1)} , (3)

for all z ∈ A. The left hand side of equation (3) can be written as

MS

(
2πi z

n

)
=
∞∑
l=0

fl exp
{

2πizl
n

}
=
n−1∑
l=0

(
fl +

∞∑
k=1

fl+kn

)
exp

{
2πizl

n

}
,
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for all z ∈ A. Using the approximation

fl ≈ fl +
∞∑
k=1

fl+kn, (4)

for all l ∈ A, we compute the discrete Fourier transform (f̂z)z∈A of (fl)l∈A by

f̂z =
n−1∑
l=0

fl exp
{

2πizl
n

}
≈MS

(
2πi z

n

)
≈ exp {λv (ĝz − 1)} ,

for all z ∈ A. Applying the inversion formula of the discrete Fourier transform, we finally calculate

fl = 1
n

n−1∑
z=0

f̂z exp
{
−2πizl

n

}
, (5)

for all l ∈ A. Note that due to the approximation in (4), instead of fl we actually calculate

fl +
∞∑
k=1

fl+kn > fl,

for all l ∈ A. This error is called wrap around error (or aliasing error), and n should be chosen
large enough in order to keep this wrap around error small. In R, the calculations in equations (2)
and (5) can be done using the command fft. An example of a possible R code is given below. In
Figure (2) we compare the distribution function (left) and the log-log plot (right) of S resulting
from the fast Fourier transform algorithm to the Monte Carlo simulations. We see that we get a
very good fit. In particular, the threshold n = 2’000’000 seems to be high enough.
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Figure 2: Comparison of the distribution function (left) and the log-log plot (right) of S resulting
from the fast Fourier transform algorithm to the Monte Carlo simulations.

For the 0.95-quantile q0.95 and the 0.99-quantile q0.99 we get

q0.95 = 1’053’089 and q0.95 = 1’075’215.

We see that we get values which are very close to the ones derived in Exercise 7.2, where we used
the normal, the translated gamma and the translated log-normal approximation.
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1 ### Fast Fourier transfom
2 n <- 2000000
3 lambdav <- 1000
4 prob.claim.size <- c(0, pgamma (1:(n -1) , shape =100 , rate =1/10) -

pgamma (0:(n -2) , shape =100 , rate =1/10))
5 prob.claim.size.ft <- fft(prob.claim.size)
6 prob.total.claim. amount .ft <- exp( lambdav *(prob.claim.size.ft -1))
7 prob.total.claim. amount <- Re(fft(prob.total.claim. amount .ft ,

inverse =TRUE)/ length (prob.total.claim. amount .ft))
8
9 ### a)

10
11 ### Monte Carlo simulations from Exercise 7.3
12 compound . poisson . distribution <- Vectorize ( function (n, lambdav ,

shape , rate){
13 number .of. claims <- rpois(n = n, lambda = lambdav )
14 sum( rgamma (n = number .of.claims , shape = shape , rate = rate))
15 },"n")
16 m <- 100000
17 set.seed (100)
18 claim. amounts <- compound . poisson . distribution (n = rep (1,m),

lambdav = 1000 , shape = 100, rate = 1/10)
19
20 ### Calculate the values of the distribution function of S using

the fast Fourier transfrom results
21 probabilities <- cumsum (prob.total.claim. amount )[floor(claim.

amounts [order(claim. amounts )]) +1]
22
23 ### Check the fast Fourier transform result
24 par(mar=c(5.1 , 4.4, 4.1, 2.1))
25 plot(claim. amounts [order(claim. amounts )], 1:m/(m+1) , xlim=c(min(

claim. amounts ),max(claim. amounts )), type="l", col="red", main="
Distribution function ", xlab="Total claim amount ", ylab="
Distribution function ", cex.lab =1.25 , cex.main =1.25 , cex.axis
=1.25 , lwd =2)

26 lines(claim. amounts [order(claim. amounts )], probabilities , lwd =1)
27 legend (" bottomright ", lty =1, lwd =2, col=c("red","black"), legend =c(

"Monte Carlo","fast Fourier "), cex =1)
28 plot(log(claim. amounts [order(claim. amounts )]), log (1 -1:m/(m+1)),

xlim=c(min(log(claim. amounts )),max(log(claim. amounts ))), ylim=c(
min(log (1-m/(m+1)),log (1- probabilities )) ,0), type="l", col="red"
, main="Log -log plot", xlab="log(total claim amount )", ylab="log
(1 - distribution function )", cex.lab =1.25 , cex.main =1.25 , cex.
axis =1.25 , lwd =2)

29 lines(log(claim. amounts [order(claim. amounts )]), log (1- probabilities
), col="black", lwd =1)

30 legend (" bottomleft ", lty =1, lwd =2, col=c("red","black"), legend =c("
Monte Carlo","fast Fourier "), cex =1)

31
32 ### b)
33
34 ### Determine the 0.95 - and the 0.99 - quantiles
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35 which( cumsum (prob.total.claim. amount ) > 0.95) [1] -1
36 which( cumsum (prob.total.claim. amount ) > 0.99) [1] -1

Solution 8.3 Variance Loading Principle

(a) Let S1, S2, S3 be the total claim amounts of the passenger cars, delivery vans and trucks,
respectively. Then, according to Proposition 2.11 of the lecture notes, we have

E[Si] = λivi E
[
Y

(i)
1

]
,

for all i ∈ {1, 2, 3}. Using the data given in the table on the exercise sheet, we get

E[S1] = 0.25 · 40 · 2’000 = 20’000,
E[S2] = 0.23 · 30 · 1’700 = 11’730 and
E[S3] = 0.19 · 10 · 4’000 = 7’600.

If we write S for the total claim amount of the car fleet, we can conclude that

E[S] = E[S1 + S2 + S3] = E[S1] + E[S2] + E[S3] = 39’330.

(b) Again using Proposition 2.11 of the lectures notes, we get

Var[Si] = λivi E
[(
Y

(i)
1

)2
]

= λivi

(
Var

(
Y

(i)
1

)
+ E

[
Y

(i)
1

]2
)

= λivi E
[
Y

(i)
1

]2 (
Vco(Y (i)

1 )2 + 1
)
,

for all i ∈ {1, 2, 3}. Using the data given in the table on the exercise sheet, we find

Var(S1) = 0.25 · 40 · 2’0002 · (2.52 + 1) = 290’000’000,
Var(S2) = 0.23 · 30 · 1’7002 · (22 + 1) = 99’705’000 and
Var(S3) = 0.19 · 10 · 4’0002 · (32 + 1) = 304’000’000.

Since S1, S2 and S3 are independent by assumption, we get for the variance of the total claim
amount S of the car fleet

Var(S) = Var(S1) + Var(S2) + Var(S3) = 693’705’000.

Using the variance loading principle with α = 3 · 10−6, we get for the premium π of the car
fleet

π = E[S] + αVar(S) = 39’330 + 3 · 10−6 · 693’705’000 ≈ 39’330 + 2’081 = 41’411.

Note that we have
π − E[S]
E[S] = αVar(S)

E[S] ≈ 2’081
39’330 ≈ 5.3%.

Thus, the loading π − E[S] is given by 5.3% of the pure risk premium.
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Solution 8.4 Panjer Distribution

If we write
pk = P[N = k],

for all k ∈ N, then, by definition of the Panjer distribution, we have

pk = pk−1

(
a+ b

k

)
,

for all k ∈ N. We can use this recursion to calculate E[N ] and Var(N). Note that the range of N is
N if a ≥ 0 and it is {0, 1, . . . , n} for some n ∈ N≥1 if a < 0.
First, we consider the case where a < 0, i.e. where the range of N is {0, 1, . . . , n}. According to the
proof of Lemma 4.7 of the lecture notes, we have

n = −a+ b

a
. (6)

For the expectation of N we get

E[N ] =
n∑
k=0

k pk =
n∑
k=1

k pk =
n∑
k=1

k pk−1

(
a+ b

k

)
= a

n∑
k=1

k pk−1 + b

n∑
k=1

pk−1

= a

n−1∑
k=0

(k + 1) pk + b

n−1∑
k=0

pk = a

n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk

= a (E[N ]− npn) + (a+ b)(1− pn)
= aE[N ] + a+ b+ pn(−an− a− b).

Using (6), we get
−an− a− b = a

a+ b

a
− a− b = 0. (7)

Hence, the above expression for E[N ] simplifies to

E[N ] = aE[N ] + a+ b,

from which we can conclude that
E[N ] = a+ b

1− a.

In order to get the variance of N , we first calculate the second moment of N :

E[N2] =
n∑
k=0

k2 pk =
n∑
k=1

k2 pk =
n∑
k=1

k2 pk−1

(
a+ b

k

)

= a

n∑
k=1

k2 pk−1 + b

n∑
k=1

k pk−1 = a

n−1∑
k=0

(k + 1)2 pk + b

n−1∑
k=0

(k + 1) pk

= a

n−1∑
k=0

k2 pk + (2a+ b)
n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk

= a (E[N2]− n2pn) + (2a+ b)(E[N ]− npn) + (a+ b)(1− pn)
= aE[N2] + (2a+ b)E[N ] + a+ b+ pn[−an2 − (2a+ b)n− a− b].
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Using (6), we get

−an2 − (2a+ b)n− a− b = −a
(
a+ b

a

)2
+ (2a+ b)a+ b

a
− a− b

= −a
2 + 2ab+ b2

a
+ 2a2 + 3ab+ b2

a
− a2 + ab

a
= 0.

(8)

Hence, the above expression for E[N2] simplifies to

E[N2] = aE[N2] + (2a+ b)E[N ] + a+ b,

from which we get

E[N2] = (2a+ b)E[N ] + a+ b

1− a

= (2a+ b) (a+ b) + (a+ b)(1− a)
(1− a)2

= 2a2 + 3ab+ b2 + a− a2 + b− ab
(1− a)2

= (a+ b)2 + a+ b

(1− a)2 .

Finally, the variance of N then is

Var(N) = E[N2]− E[N ]2 = (a+ b)2 + a+ b

(1− a)2 − (a+ b)2

(1− a)2 = a+ b

(1− a)2 .

In the case where a ≥ 0, i.e. where the range of N is N, we can perform analogous calculations
with the only difference that the index of summation in all the sums involved goes up to ∞ instead
of stopping at n. As a consequence, the calculations in (7) and in (8) aren’t necessary anymore.
The formulas for E[N ] and Var(N), however, remain the same.
The ratio of Var(N) to E[N ] is given by

Var(N)
E[N ] = a+ b

(1− a)2
1− a
a+ b

= 1
1− a.

Note that if a < 0, i.e. if N has a binomial distribution, we have Var(N) < E[N ]. If a = 0, i.e. if
N has a a Poisson distribution, we have Var(N) = E[N ]. Finally, in the case of a > 0, i.e. for a
negative-binomial distribution, we have Var(N) > E[N ].
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