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Solution 9.1 Utility Indifference Price

(a) Suppose that there exist two utility indifference prices π1 = π1(u, S, c0) and π2 = π2(u, S, c0)
with π1 6= π2. By definition of a utility indifference price, we have

E[u(c0 + π1 − S)] = u(c0) = E[u(c0 + π2 − S)]. (1)

Without loss of generality, we assume that π1 < π2. Then, we have

c0 + π1 − S < c0 + π2 − S a.s.,

which implies
u(c0 + π1 − S) < u(c0 + π2 − S) a.s.,

since u is a utility function and, thus, strictly increasing by definition. Finally, by taking the
expectation, we get

E[u(c0 + π1 − S)] < E[u(c0 + π2 − S)],

which is a contradiction to (1). We conclude that if the utility indifference price π exists, then
it is unique. Moreover, being a risk-averse utility function, u is strictly concave by definition.
Hence, we can apply Jensen’s inequality to get

u(c0) = E[u(c0 + π − S)] < u(E[c0 + π − S]) = u(c0 + π − E[S]).

Note that we used that S is non-deterministic and, thus, Jensen’s inequality is strict. Since u
is strictly increasing, this implies π − E[S] > 0, i.e. π > E[S].

(b) Note that
E
[
Y

(1)
1

]
= γ

c
= 20

0.01 = 2’000

and that
E
[
Y

(2)
1

]
= 1

0.005 = 200.

Since S1 and S2 both have a compound Poisson distribution, Proposition 2.11 of the lecture
notes gives

E[S1] = λ1v1E
[
Y

(1)
1

]
= 1

2 · 2’000 · 2’000 = 2’000’000

and
E[S2] = λ2v2E

[
Y

(2)
1

]
= 1

10 · 10’000 · 200 = 200’000.

We conclude that
E[S] = E[S1 + S2] = E[S1] + E[S2] = 2’200’000.

(c) The utility indifference price π = π(u, S, c0) is defined through the equation

u(c0) = E[u(c0 + π − S)].
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Using that in this exercise the utility function u is given by

u(x) = 1− 1
α

exp {−αx} ,

for all x ∈ R, with α = 1.5 · 10−6, we get

u(c0) = E[u(c0 + π − S)] ⇐⇒ 1− 1
α

exp {−αc0} = E
[
1− 1

α
exp {−α(c0 + π − S)}

]
⇐⇒ exp {−αc0} = E [exp {−α(c0 + π − S)}]
⇐⇒ exp {απ} = E [exp {αS}]

⇐⇒ π = 1
α

logE [exp {αS}] .

Note that we can write S = S1 + S2 and use the independence of S1 and S2 to get

π = 1
α

logE [exp {α(S1 + S2)}]

= 1
α

log (E [exp {αS1}]E [exp {αS2}])

= 1
α

(logE [exp {αS1}] + logE [exp {αS2}])

= 1
α

[logMS1(α) + logMS2(α)] ,

where MS1 and MS2 denote the moment generating functions of S1 and S2, respectively.
Moreover, since S1 and S2 both have a compound Poisson distribution, Proposition 2.11 of
the lecture notes gives

π = 1
α

(
λ1v1

[
M
Y

(1)
1

(α)− 1
]

+ λ2v2

[
M
Y

(2)
1

(α)− 1
])
,

whereM
Y

(1)
1

andM
Y

(2)
1

denote the moment generating functions of Y (1)
1 and Y (2)

1 , respectively.

Using that Y (1)
1 ∼ Γ(γ = 20, c = 0.01) and that Y (2)

1 ∼ expo(0.005), we get

M
Y

(1)
1

(α) =
(

c

c− α

)γ
=
(

0.01
0.01− 1.5 · 10−6

)20

and
M
Y

(2)
1

(α) = 0.005
0.005− α = 0.005

0.005− 1.5 · 10−6 .

In particular, since α < c and α < 0.005, both M
Y

(1)
1

(α) and M
Y

(2)
1

(α) and thus also MS1(α)
and MS2(α) exist. Inserting all the numerical values, we find the utility indifference price

π = 2
3 · 106 ·

(
1
2 · 2’000 ·

[(
0.01

0.01− 1.5 · 10−6

)20
− 1
]

+ 1
10 · 10’000 ·

[
0.005

0.005− 1.5 · 10−6 − 1
])

= 2’203’213.

Note that we have

π − E[S]
E[S] = 2’203’213− 2’200’000

2’200’000 = 3’213
2’200’000 ≈ 0.146%.

Thus, the loading π − E[S] is given by approximately 0.146% of the pure risk premium.
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(d) The moment generating function MX of X ∼ N (µ, σ2) with µ ∈ R and σ2 > 0 is given by

MX(r) = exp
{
rµ+ r2σ2

2

}
,

for all r ∈ R. Hence, if we assume Gaussian distributions for S1 and S2, then we get

π = 1
α

[logMS1(α) + logMS2(α)]

= 1
α

(
αE[S1] + α2

2 Var(S1) + αE[S2] + α2

2 Var(S2)
)

= E[S1] + E[S2] + α

2 [Var(S1) + Var(S2)]

= E[S] + α

2Var(S),

where in the last equation we used that S1 and S2 are independent. We see that in this case
the utility indifference price is given according to a variance loading principle. Since here we
assume Gaussian distributions for S1 and S2 with the same corresponding first two moments
as in the compound Poisson case in part (c), in order to calculate Var(S1) and Var(S2), we
again assume that S1 and S2 have compound Poisson distributions. Note that

E
[(
Y

(1)
1

)2
]

= γ(γ + 1)
c2

= 20 · 21
0.012 = 4’200’000,

and that
E
[(
Y

(2)
1

)2
]

= 2
0.0052 = 80’000.

Then, Proposition 2.11 of the lecture notes gives

Var(S1) = λ1v1E
[(
Y

(1)
1

)2
]

= 1
2 · 2’000 · 4’200’000 = 4’200’000’000

and
Var(S2) = λ2v2E

[(
Y

(2)
1

)2
]

= 1
10 · 10’000 · 80’000 = 80’000’000,

which leads to

Var(S) = Var(S1 + S2) = Var(S1) + Var(S2) = 4’280’000’000.

We conclude that the utility indifference price is given by

π = E[S] + α

2Var(S) = 2’200’000 + 1.5 · 10−6

2 · 4’280’000’000 = 2’203’210.

Note that we have
π − E[S]
E[S] = 2’203’210− 2’200’000

2’200’000 = 3’210
2’200’000 ≈ 0.146%.

Thus, as in part (c), the loading π − E[S] is given by approximately 0.146% of the pure
risk premium. The reason why we get the same results in (c) and (d) is the Central Limit
Theorem. In particular, neither the gamma distribution nor the exponential distribution
are heavy-tailed distributions. Moreover, the skewness ςS1 of S1 and also the skewness ςS2

of S2 are rather small (ςS1 ≈ 0.034 and ςS2 ≈ 0.067). Thus, λ1v1 = λ2v2 = 1’000 are large
enough for the normal approximations to be valid approximations for the compound Poisson
distributions.
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Solution 9.2 Value-at-Risk and Expected Shortfall

(a) Since S ∼ LN(µ, σ2) with µ = 20 and σ2 = 0.015, we have

E[S] = exp
{
µ+ σ2

2

}
≈ 488’817’614.

Let z denote the VaR of S−E[S] at security level 1− q = 99.5%. Then, since the distribution
function of a lognormal distribution is continuous and strictly increasing, z is defined via the
equation

P[S − E[S] ≤ z] = 1− q.

By writing Φ for the distribution function of a standard Gaussian distribution, we can calculate
z as follows

P[S − E[S] ≤ z] = 1− q ⇐⇒ P[S ≤ z + E[S]] = 1− q

⇐⇒ P
[

logS − µ
σ

≤ log(z + E[S])− µ
σ

]
= 1− q

⇐⇒ Φ
[

log(z + E[S])− µ
σ

]
= 1− q

⇐⇒ log(z + E[S]) = µ+ σ · Φ−1(1− q)
⇐⇒ z = exp

{
µ+ σ · Φ−1(1− q)

}
− E[S]

⇐⇒ z = exp{µ}
(

exp
{
σ · Φ−1(1− q)

}
− exp

{
σ2

2

})
.

For 1− q = 99.5%, we have Φ−1(1− q) ≈ 2.576. Thus, we get

z ≈ 176’299’286.

In particular, πCoC is then given by

πCoC = E[S] + rCoC · z ≈ 488’817’614 + 0.06 · 176’299’286 ≈ 499’395’571.

Note that we have

πCoC − E[S]
E[S] ≈ 499’395’571− 488’817’614

488’817’614 = 10’577’957
488’817’614 ≈ 2.164%.

Thus, the loading πCoC − E[S] is given by approximately 2.164% of the pure risk premium.

(b) For all u ∈ (0, 1), let VaRu and ESu denote the VaR risk measure and the expected shortfall
risk measure, respectively, at security level u. Note that actually in part (a) we found that

VaRu(S − E[S]) = exp
{
µ+ σ · Φ−1(u)

}
− E[S],

and that by a similar computation we get

VaRu(S) = exp
{
µ+ σ · Φ−1(u)

}
,

for all u ∈ (0, 1). In particular, we have

VaRu(S − E[S]) + E[S] = VaRu(S),
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for all u ∈ (0, 1). Since the distribution function of S is continuous and strictly increasing,
according to Example 6.26 of the lecture notes, we have

ES1−q(S − E[S]) = E [S − E[S] |S − E[S] ≥ VaR1−q(S − E[S])]
= E [S − E[S] |S ≥ VaR1−q(S)]
= E [S |S ≥ VaR1−q(S)]− E[S]
= ES1−q(S)− E[S].

By definition of the mean excess function eS(·) of S, we have

ES1−q(S) = E [S −VaR1−q(S) |S ≥ VaR1−q(S)]+VaR1−q(S) = eS [VaR1−q(S)]+VaR1−q(S).

Moreover, according to the formula given in Chapter 3.2.3 of the lecture notes, the mean
excess function eS [VaR1−q(S)] above level VaR1−q(S) for the log-normal distribution S is
given by

eS [VaR1−q(S)] = E[S]

1− Φ
[

log VaR1−q(S)−µ−σ2

σ

]
1− Φ

[
log VaR1−q(S)−µ

σ

]
−VaR1−q(S).

Using the formula calculated above for VaRu(S) with u = 1− q, we get

ES1−q(S) = E[S]

1− Φ
[

log VaR1−q(S)−µ−σ2

σ

]
1− Φ

[
log VaR1−q(S)−µ

σ

]


= E[S]

1− Φ
[
µ+σ·Φ−1(1−q)−µ−σ2

σ

]
1− Φ

[
µ+σ·Φ−1(1−q)−µ

σ

]


= E[S]
(

1− Φ
[
Φ−1(1− q)− σ

]
1− Φ [Φ−1(1− q)]

)

= E[S] 1
q

(
1− Φ

[
Φ−1(1− q)− σ

])
.

In particular, we have found

ES1−q(S − E[S]) = 1
q
E[S]

(
1− Φ

[
Φ−1(1− q)− σ

])
− E[S]

= 1
q
E[S]

(
1− q − Φ

[
Φ−1(1− q)− σ

])
= 1
q

exp
{
µ+ σ2

2

}(
1− q − Φ

[
Φ−1(1− q)− σ

])
.

For 1− q = 99% we get
ES99%(S − E[S]) ≈ 184’119’256.

Finally, πCoC is then given by

πCoC = E[S] + rCoC · ES99%(S − E[S]) ≈ 488’817’614 + 0.06 · 184’119’256 ≈ 499’864’769.

Note that we have
πCoC − E[S]

E[S] ≈ 499’864’769− 488’817’614
488’817’614 = 11’047’155

488’817’614 ≈ 2.26%.

Thus, the loading πCoC − E[S] is given by approximately 2.26% of the pure risk premium. In
particular, the cost-of-capital price in this example is higher using the expected shortfall risk
measure at security level 99% than using the VaR risk measure at security level 99.5%.
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(c) In parts (a) and (b) we found that

VaR99.5%(S − E[S]) < ES99%(S − E[S]).

Let 1− q = 99%. Now the goal is to find u ∈ [0, 1] such that

VaRu(S − E[S]) = ES1−q(S − E[S]),

which is equivalent to
VaRu(S) = ES1−q(S).

From part (b) we know that

VaRu(S) = exp
{
µ+ σ · Φ−1(u)

}
,

for all u ∈ (0, 1), and that

ES1−q(S) = 1
q
E[S]

(
1− Φ

[
Φ−1(1− q)− σ

])
.

Hence, we can solve for u to get

u = Φ

 log
[

1
q E[S]

(
1− Φ

[
Φ−1(1− q)− σ

])]
− µ

σ


≈ 99.62%.

We conclude that in this example the cost-of-capital price using the VaR risk measure at
security level 99.62% is approximately equal to the cost-of-capital price using the expected
shortfall risk measure at security level 99%.

(d) Since S ∼ LN(µ, σ2) with µ = 20 and σ2 = 0.015 and U and V are assumed to be independent,
we have

U ∼ N (µ, σ2), V ∼ N (µ, σ2) and U + V ∼ N (2µ, 2σ2).
Let X ∼ N (µ̃, σ̃2) for some µ̃ ∈ R and σ̃2 > 0. Then, VaR1−q(X) can be calculated as

P [X ≤ VaR1−q(X)] = 1− q ⇐⇒ P
[
X − µ̃
σ̃

≤ VaR1−q(X)− µ̃
σ̃

]
= 1− q

⇐⇒ Φ
[
VaR1−q(X)− µ̃

σ̃

]
= 1− q

⇐⇒ VaR1−q(X) = µ̃+ σ̃ · Φ−1(1− q).

This implies that

VaR1−q(U) + VaR1−q(V ) = µ+ σ · Φ−1(1− q) + µ+ σ · Φ−1(1− q) = 2µ+ 2σ · Φ−1(1− q)

and that
VaR1−q(U + V ) = 2µ+

√
2σ · Φ−1(1− q).

Since

VaR1−q(U + V ) > VaR1−q(U) + VaR1−q(V ) ⇐⇒ Φ−1(1− q) >
√

2Φ−1(1− q)
⇐⇒ Φ−1(1− q) < 0,

one can see that in this example

VaR1−q(U + V ) > VaR1−q(U) + VaR1−q(V ),

for all 1− q ∈
(
0, 1

2
)
, and that

VaR1−q(U + V ) < VaR1−q(U) + VaR1−q(V ),

for all 1− q ∈
( 1

2 , 1
)
. In particular, the assertions on the exercise sheet follow readily.
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Solution 9.3 Esscher Premium

(a) Let α ∈ (0, r0) and M ′S and M ′′S denote the first and second derivative of MS , respectively.
According to the proof of Corollary 6.16 of the lecture notes, the Esscher premium πα can be
written as

πα = M ′S(α)
MS(α) .

Hence, the derivative of πα can be calculated as

d

dα
πα = d

dα

M ′S(α)
MS(α) = M ′′S (α)

MS(α) −
(
M ′S(α)
MS(α)

)2
=

E
[
S2 exp{αS}

]
MS(α) −

(
E [S exp{αS}]

MS(α)

)2

= 1
MS(α)

∫ ∞
−∞

x2 exp{αx} dF (x)−
[

1
MS(α)

∫ ∞
−∞

x exp{αx} dF (x)
]2

=
∫ ∞
−∞

x2 dFα(x)−
[∫ ∞
−∞

x dFα(x)
]2
,

where we define the distribution function Fα by

Fα(s) = 1
MS(α)

∫ s

−∞
exp{αx} dF (x),

for all s ∈ R. Let X be a random variable with distribution function Fα. Then, we get

d

dα
πα =

∫ ∞
−∞

x2 dFα(x)−
[∫ ∞
−∞

x dFα(x)
]2

= E
[
X2]− E[X]2 = Var(X) ≥ 0.

Hence, the Esscher premium πα is always non-decreasing. Moreover, if S is non-deterministic,
then also X is non-deterministic. Thus, in this case we get

d

dα
πα = Var(X) > 0.

In particular, the Esscher premium πα then is strictly increasing in α.

(b) Let α ∈ (0, r0). According to Corollary 6.16 of the lecture notes, the Esscher premium πα is
given by

πα = d

dr
logMS(r)

∣∣∣∣
r=α

.

For small values of α, we can use a first-order Taylor approximation around 0 to get

πα ≈
d

dr
logMS(r)

∣∣∣∣
r=0

+ α · d
2

dr2 logMS(r)
∣∣∣∣
r=0

= M ′S(0)
MS(0) + α

(
M ′′S (0)
MS(0) −

[
M ′S(0)
MS(0)

]2
)

= E[S] + α
(
E
[
S2]− E[S]2

)
= E[S] + αVar(S).

We conclude that for small values of α, the Esscher premium πα of S is approximately equal
to a premium resulting from a variance loading principle.

(c) Since S ∼ CompPoi(λv,G), we can use Proposition 2.11 of the lecture notes to get

logMS(r) = λv [MG(r)− 1] ,

where MG denotes the moment generating function of a random variable with distribution
function G. Since G is the distribution function of a gamma distribution with shape parameter
γ > 0 and scale parameter c > 0, we have

MG(r) =
(

c

c− r

)γ
,
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for all r < c. In particular, also MS(r) is defined for all r < c, which implies that the Esscher
premium πα exists for all α ∈ (0, c).
Now let α ∈ (0, c). Then, the Esscher premium πα can be calculated as

πα = d

dr
logMS(r)

∣∣∣∣
r=α

= d

dr
λv

[(
c

c− r

)γ
− 1
] ∣∣∣∣∣
r=α

= d

dr
λv

[(
1− r

c

)−γ
− 1
] ∣∣∣∣∣
r=α

= λv
γ

c

(
1− r

c

)−γ−1
∣∣∣∣∣
r=α

= λv
γ

c

(
c

c− α

)γ+1
.

Note that since c > c− α and γ > 0, we have(
c

c− α

)γ+1
> 1,

and, thus,

πα = λv
γ

c

(
c

c− α

)γ+1
> λv

γ

c
= E[S].

Solution 9.4 Utility Indifference Price and the Uncertainty in the Number of Claims

In Exercise 9.1 we have shown that

π̃ = π̃
(
u, S̃, c0

)
= 1
α

logE
[
exp

{
αS̃
}]

.

From this we can calculate

π̃ = 1
α

logE
[

exp
{
α

λv∑
i=1

Yi

}]
= 1
α

λv∑
i=1

logE [exp {αYi}] = 1
α
λv logMY1(α).

We then have
π > π̃ ⇐⇒ MY1(α)− 1 > logMY1(α).

We define
g(x) = x− 1 and h(x) = log x.

For x = 1 we have g(1) = 0 = h(1). Since g is linear and h is strictly concave, we get

g(x) > h(x)

for all x 6= 1 in the domain of g and h. Since for the claim sizes we assume Y1 > 0, P-a.s., and since
α > 0, we have MY1(α) > 1. If follows that

MY1(α)− 1 > logMY1(α)

and, thus, π > π̃. This does not come as a surprise: in the compound Poisson model we have
randomness in the number of claims and under risk aversion we do not like this uncertainty. This
explains why π > π̃.
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