
Appendix A: The Kreps–Yan theorem

This section contains an important separation theorem proved independently by D. Kreps

and J.-A. Yan around the same time. It is a crucial ingredient for proving most versions

of the fundamental theorem of asset pricing and also comes up in the Bichteler–Dellacherie

characterisation of semimartingales as good integrators in stochastic analysis.

We begin by recalling some concepts and results from functional analysis. Fix a proba-

bility space (Ω,F , P ). For p ∈ [1,∞), the norm dual of the space Lp is (Lp)∗ = Lq with q

conjugate to p, meaning that 1
p + 1

q = 1. This is not true for p =∞.

If we fix conjugate numbers p, q both in [1,∞], the dual pairing between Lp and Lq is

given by

(Y, Z) := E[Y Z] for Y ∈ Lp, Z ∈ Lq.

For p ∈ [1,∞), the weak topology on Lp, denoted by σ(Lp, Lq), is the coarsest topology

on Lp which makes all the linear functionals Y 7→ (Y,Z) continuous for all Z ∈ Lq. So a

sequence (Yn)n∈IN ⊆ Lp converges to Y in σ(Lp, Lq) if and only if limn→∞E[YnZ] = E[Y Z]

for each Z ∈ Lq.

For p ∈ (1,∞], the weak* topology on Lp, denoted by σ(Lp, Lq), views Lp as the dual of

Lq (which explains why we must take p > 1); it is the coarsest topology on Lp which makes

all the linear functionals Y 7→ (Y, Z) continuous for all Z ∈ Lq.

It is clear from the above definitions that for 1 < p < ∞, the weak and the weak*

topology coincide. For p = 1, there is (apart from the norm topology) only the weak topology

on L1, with Yn → Y in σ(L1, L∞) if and only if limn→∞E[YnZ] = E[Y Z] for each Z ∈ L∞.

For p = ∞, there is (apart from the norm topology) only the weak* topology on L∞, with

Zn → Z in σ(L∞, L1) if and only if limn→∞E[Y Zn] = E[Y Z] for each Y ∈ L1.

Importantly, the dual of L∞ with the weak* topology can be identified with L1; see [1,

Theorem 5.93]. (The norm dual of L∞ is larger than L1, which creates technical problems.)

Finally, a convex subset of Lp, for p ∈ [1,∞), is weakly closed, i.e. closed for the weak

topology σ(Lp, Lq), if and only if it is (strongly) closed in Lp, i.e. for the norm-topology on
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Lp. Note that p =∞ is again not allowed here.

After these preliminaries, we are now in a position to formulate and prove the announced

separation result.

Theorem A.1. (Kreps/Yan) Fix conjugate p, q ∈ [1,∞] and suppose that C ⊆ Lp is a

convex cone with C ⊇ −Lp+ and C ∩ Lp+ = {0}. If C is closed in σ(Lp, Lq) (meaning that it

is weak* closed if p =∞), then there exists a probability measure Q ≈ P with dQ
dP ∈ L

q and

EQ[Y ] ≤ 0 for all Y ∈ C.

Proof. The proof consists of a combination of a separation argument with an exhaustion

argument and goes as follows.

1) For any fixed x ∈ Lp+ \ {0}, the assumption gives x 6∈ C. The Hahn–Banach theorem

in its separating hyperplane version (see [1, Corollary 5.80]) thus allows us to strictly separate

x from C: there exists some zx ∈ Lq with (x, zx) > α and (Y, zx) ≤ α for all Y ∈ C. (Note

that for p =∞, it is important here that we use the weak* topology so that the dual is L1.)

Because C is a cone, we may take α = 0. Choosing Y := −I{zx<0}, which is in C because

C ⊇ −Lp+, next gives −E[zxI{zx<0}] = (Y, zx) ≤ 0 and therefore zx ≥ 0, and because the

separation is strict, we must have zx 6≡ 0 to avoid (x, zx) = 0. So we can and do normalise

zx to have ‖zx‖Lq = 1, for each x. By Jensen’s inequality, this implies that E[zx] ≤ 1.

2) Now consider the family G of all sets Γx := {zx > 0} ∈ F , where x runs through

Lp+ \ {0}. For any set A ∈ F with P [A] > 0, we have P [A∩Γx] > 0 for some Γx ∈ G; indeed,

IA ∈ Lp+ \ {0} and therefore we can take x = IA and use that

0 < E[IAzIA ] = E[IAzIAI{zIA>0}] = E[IAzIAIΓIA
]

to conclude that we must have P [A ∩ ΓIA ] > 0. By Lemma A.2 below, this implies that the

family G contains a countable subfamily of sets whose union has probability 1. So there is a
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sequence (xn)n∈IN in Lp+ such that

P

[ ∞⋃
n=1

Γxn

]
= P

[ ∞⋃
n=1

{zxn
> 0}

]
= 1.

Defining z := const.
∑∞
n=1 2−nzxn

therefore yields a random variable z > 0 P -a.s. which is

in Lq because ‖zxn‖Lq ≤ 1 for all n, and we also have E[Y z] = const.
∑∞
n=1 2−nE[Y zxn ] ≤ 0

for all Y ∈ C. Finally, monotone integration gives E[z] = const.
∑∞
n=1 2−nE[zxn

] = 1 for

const.−1 :=

∞∑
n=1

2−nE[zxn ] ≤ 1

so that dQ := z dP gives the desired probability measure. q.e.d.

The following abstract result provides the missing step in the proof of Theorem A.1.

Lemma A.2. Let Λ 6= ∅ be an index family and G = (Γλ)λ∈Λ a family of sets in F such

that any set A ∈ F with P [A] > 0 has a nontrivial intersection with some Γλ ∈ G, meaning

that P [A ∩ Γλ] > 0. Then there exists an at most countable subfamily (Γλn
)n∈IN of sets in

G whose union has probability 1.

Proof. Suppose first that G is closed under countable unions. Then supλ∈Λ P [Aλ] is attained

in some Γλ∗ ∈ G, because we can approximate the supremum along a sequence (Γλm
)m∈IN

and take Γλ∗ :=
⋃∞
m=1 Γλm , which is in G by the above closedness assumption. If we had

P [Γcλ∗ ] > 0, we could find a set Γλ ∈ G with P [Γcλ∗ ∩ Γλ] > 0 by the assumption on G, and

so we should get P [Γλ ∪ Γλ∗ ] > P [Γλ∗ ], contradicting the maximality of Γλ∗ . So Γλ∗ has

probability 1 and we can take the family consisting of this single set.

In general, we consider the family G′ formed by all countable unions of sets from G; this

family satisfies the same assumption as G. Applying the above argument to G′ then gives the

assertion. q.e.d.
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The following variant of Theorem A.1 will be used later.

Proposition A.3. Fix conjugate p, q ∈ [1,∞] and suppose that C ⊆ Lp is a convex cone

with C ⊇ −Lp+ and C∩ (h+Lp+) = {h} for some h ∈ Lp. If C is closed in σ(Lp, Lq) (meaning

that it is weak* closed if p =∞), then there exists a probability measure Q ≈ P with dQ
dP ∈ L

q

and EQ[Y ] ≤ 0 for all Y ∈ C and EQ[h] = 0.

Proof. Since h ∈ C, the hypothesis can easily be rewritten as (C−h)∩Lp+ = {0}, and C−h

is closed like C. As in the proof of Theorem A.1, we again strictly separate each x ∈ Lp+ \{0}

from C − h by zx to obtain E[xzx] ≥ β > α ≥ E[(Y − h)zx] for all Y ∈ C. Since h ∈ C and

C is a cone, using Y ′ := nY + h and letting n → ∞ shows again that we can take α = 0;

and because C ⊇ −L∞+ , h ∈ C and C is a cone, we get that Y ′ := −I{zx<0} + h is in C and

can deduce again that zx ≥ 0 P -a.s. Now we construct Q as before, and since h ∈ C, we

already get EQ[h] ≤ 0. But also Y ≡ 0 is in C, so E[−hzx] ≤ 0 for each x, and therefore also

EQ[h] ≥ 0. q.e.d.
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