
Appendix B: A Komlós-type lemma from probability theory

These notes provide a formulation and proof for an elementary lemma from probability theory

which is extremely useful in many optimisation problems involving convexity. Recall that L0

denotes the vector space of all (equivalence classes of, for the equivalence relation of equality

P -a.s.) random variables on a given probability space (Ω,F , P ) and taking values in IR.

For a sequence (Yn)n∈IN in L0, we denote for m ∈ IN by conv(Ym, Ym+1, . . .) the set of all

(finite) convex combinations of (Yk)k≥m, i.e. all Y of the form Y =
∞∑
k=m

λkYk with the λk ≥ 0

satisfying
∞∑
k=m

λk = 1 and at most finally many λk 6= 0.

Lemma B.1. For any sequence (Yn)n∈IN of nonnegative random variables, there exists a

sequence (Ỹn)n∈IN with Ỹn ∈ conv(Yn, Yn+1, . . .) for all n and Ỹn → Ỹ∞ P -a.s. for some

random variable Ỹ∞ taking values in [0,+∞]. Moreover, if P [Yn ≥ α] ≥ δ > 0 for some

α > 0, then P [Ỹ∞ > 0] > 0. If conv(Y1, Y2, . . .) is bounded in L0, then Ỹ∞ <∞ P -a.s.

Proof. Set Cn := conv(Yn, Yn+1, . . .) ⊇ Cn+1 so that the sequence Jn := infY ∈Cn
E[e−Y ]

increases to some J ≤ 1. Take a sequence (Y ′n)n∈IN with Y ′n ∈ Cn and E[e−Y
′
n ] ≤ Jn + 1

n for

all n. For ε > 0, define the set

Bε :=

{
(x, y) ∈ [0,∞)2 : |x− y| ≥ ε and x ∧ y ≤ 1

ε

}

(a picture will help to illustrate this). As the mapping z 7→ e−z is convex, we always have

e−(x+y)/2 ≤ 1

2
(e−x + e−y).

For (x, y) ∈ Bε, a calculation gives

e−(x+y)/2 − 1

2
(e−x + e−y) ≤ −δ for some δ = δ(ε) > 0,

1



and therefore

e−(x+y)/2 ≤ 1

2
(e−x + e−y)− δIBε

(x, y).

Choosing x := Y ′m and y := Y ′n yields for n 6= m that

Jn∧m ≤ E
[
e−(Y

′
m+Y ′

n)/2
]

≤ 1

2

(
E
[
e−Y

′
m
]

+ E
[
e−Y

′
n
])
− δP [(Y ′m, Y

′
n) ∈ Bε]

≤ 1

2

(
Jm +

1

m
+ Jn +

1

n

)
− δP [(Y ′m, Y

′
n) ∈ Bε],

and so we obtain that

lim
n,m→∞

P [(Y ′m, Y
′
n) ∈ Bε] = 0.

Considering the separate cases |x− y| < ε or x ∧ y > 1
ε or (x, y) ∈ Bε leads to the estimate

|e−x − e−y| ≤ ε+ 2e−1/ε + 2IBε
(x, y).

This gives in turn that∣∣∣E[e−Y ′
m − e−Y

′
n
]∣∣∣ ≤ ε+ 2e−1/ε + 2P [(Y ′m, Y

′
n) ∈ Bε]

so that (e−Y
′
n)n∈IN is a Cauchy sequence in L1(P ) and hence convergent in L1(P ). Therefore

this sequence has a subsequence (e−Ỹn)n∈IN which converges P -a.s., and then the sequence

(Ỹn)n∈IN is also P -a.s. convergent and has Ỹn ∈ Cn like for Y ′n.

If P [Yn ≥ α] ≥ δ > 0, then E[e−Yn ] ≤ 1 − δ + δe−δ and the same bound < 1 holds for

any Ỹn ∈ Cn by Jensen’s inequality. So E[e−Ỹ∞ ] ≤ 1− δ + δe−δ by dominated convergence,

and so P [Ỹ∞ > 0] > 0.

Finally, if a set is bounded in L0, all its accumulation points in L0 are finite-valued

P -a.s. [→ exercise]. q.e.d.

Remark. If one has extra properties for the original sequence (Yn)n∈IN , one can also say

more about the limit Ỹ∞. For example, if all the Yn are bounded by some constant, the same

is true for the Ỹn and hence also for Ỹ∞.
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