Appendix C: Essential supremum and infimum

These notes briefly recall the definition and main properties of the essential supremum and infimum of a family of (possibly extended) real-valued random variables. We fix a probability space (Ω, \mathcal{F}, P) , an arbitrary index set $\Lambda \neq \emptyset$ and a family $(Y_{\lambda})_{\lambda \in \Lambda}$ of (possibly extended) real-valued random variables on (Ω, \mathcal{F}, P) .

Definition. A random variable Z is called essential supremum of the family $(Y_{\lambda})_{{\lambda} \in {\Lambda}}$ if

- (i) $Z \geq Y_{\lambda}$ P-a.s. for each $\lambda \in \Lambda$.
- (ii) $Z \leq Z'$ P-a.s. for each random variable Z' satisfying $Z' \geq Y_{\lambda}$ P-a.s. for each $\lambda \in \Lambda$.

We then write briefly $Z = \operatorname{ess\ sup} Y_{\lambda}$. The essential infimum $\operatorname{ess\ inf} Y_{\lambda}$ is defined analogously by simply reversing all inequalities above.

Remarks. 1) If Λ is countable, we can take the pointwise supremum $Z(\omega) := \sup_{\lambda \in \Lambda} Y_{\lambda}(\omega)$; this is measurable and thus a random variable. But if Λ is uncountable, this no longer works; on the one hand, the pointwise supremum may fail to be measurable, and on the other hand, (i) and (ii) can also fail, as illustrated by the subsequent example.

- 2) By (ii), an essential supremum is P-a.s. unique; so we only have to prove its existence.
- 3) The subsequent results can of course also be formulated and proved (with obvious changes) for the essential infimum instead of supremum.
- 4) Since the definition and all the arguments below only involve the order structure of \mathbb{R} , but not the actual values of the random variables under consideration, everything works equally well if we allow the Y_{λ} to take values in $[-\infty, +\infty]$.

Example. Let $\Omega = [0, 1]$, P = Lebesgue measure, $\Lambda = [0, 1]$ and $Y_{\lambda}(\omega) = I_{\{\lambda\}}(\omega)$. Then

$$\sup_{\lambda \in \Lambda} Y_{\lambda}(\omega) = 1 \quad \text{for each fixed } \omega,$$

and so the pointwise supremum $\sup_{\lambda \in \Lambda} Y_{\lambda} \equiv 1$ is here measurable. But for every fixed λ , we also have $Y_{\lambda} = 0$ P-a.s. and thus obviously

$$\operatorname{ess\,sup}_{\lambda \in \Lambda} Y_{\lambda} = 0 \qquad (P\text{-a.s.})$$

Proposition C.1. For any family $(Y_{\lambda})_{{\lambda}\in\Lambda}$ of (possibly extended) real-valued random variables, ess $\sup_{{\lambda}\in\Lambda} Y_{\lambda} = Z$ exists, and $Z = \sup_{{j}\in J_0} Y_{j}$ for some countable subset J_0 of Λ .

Proof. Since the above definition only involves the order structure of \mathbb{R} , we may and do assume without loss of generality that all Y_{λ} are bounded, uniformly in λ and ω . Set

$$c := \sup \left\{ E \left[\sup_{j \in J} Y_j \right] : J \subseteq \Lambda \text{ countable} \right\}$$

and choose a sequence $(J_n)_{n\in\mathbb{N}}$ of countable subsets of Λ such that

$$\lim_{n \to \infty} E\left[\sup_{j \in J_n} Y_j\right] = c.$$

Then $J_0 := \bigcup_{n \in \mathbb{N}} J_n \subseteq \Lambda$ is countable, so $Z := \sup_{j \in J_0} Y_j$ is a random variable, and E[Z] = c by monotone integration. We claim that Z does the job, and so we check the required properties.

- (ii) If $Z' \geq Y_{\lambda}$ P-a.s. for each $\lambda \in \Lambda$, then also $P[Z' \geq Y_j \text{ for all } j \in J_0] = 1$ because J_0 is countable, and thus $Z' \geq Z$ P-a.s. by the definition of Z.
- (i) For each $\lambda \in \Lambda$, we have $Z \vee Y_{\lambda} = \max(Z, Y_{\lambda}) \geq Z$, and by the definitions of c and J_0 ,

$$E[Z \lor Y_{\lambda}] = E\left[\sup_{j \in J_0 \cup \{\lambda\}} Y_j\right] \le c = E[Z].$$

Hence $Z \vee Y_{\lambda} - Z \geq 0$ and $E[Z \vee Y_{\lambda} - Z] \leq 0$; so we must have $Z \vee Y_{\lambda} = Z$ *P*-a.s., and thus $Z \geq Y_{\lambda}$ *P*-a.s. This holds for each $\lambda \in \Lambda$, and so Z satisfies (i). **q.e.d.**

Corollary C.2. Suppose that $(Y_{\lambda})_{{\lambda}\in\Lambda}$ is directed upward, i.e., for each pair ${\lambda},{\lambda}'$ in ${\Lambda}$, there is some ${\mu}\in\Lambda$ such that $\max(Y_{\lambda},Y_{{\lambda}'})\leq Y_{\mu}$; this holds in particular if the family $(Y_{\lambda})_{{\lambda}\in\Lambda}$ is closed under taking maxima. Then there is a sequence $(j_n)_{n\in\mathbb{N}}$ in ${\Lambda}$ such that

$$\operatorname{ess\,sup} Y_{\lambda} = -\lim_{n \to \infty} Y_{j_n} \qquad P\text{-}a.s.,$$

i.e., $Y_{j_n} \leq Y_{j_{n+1}}$ P-a.s. for each n and $Y_{j_n} \nearrow \operatorname{ess\,sup} Y_{\lambda}$ P-a.s.

Proof. Choose $J_0 = \{\lambda_n : n \in \mathbb{N}\} \subseteq \Lambda$ countable with $\operatorname{ess\,sup}_{\lambda \in \Lambda} Y_{\lambda} = \sup_{n \in \mathbb{N}} Y_{\lambda_n}$. Set $j_1 := \lambda_1$ and choose recursively an element j_n of Λ such that $\max (Y_{j_{n-1}}, Y_{\lambda_n}) \leq Y_{j_n}$. Then clearly

$$Y_{j_{n-1}} \le Y_{j_n} \le \operatorname{ess\,sup} Y_{\lambda}$$
 P-a.s. for all n ,

and induction yields

$$Y_{j_n} \ge \max_{k=1,\dots,n} Y_{\lambda_k},$$

so that

$$\operatorname{ess\,sup}_{\lambda\in\Lambda}Y_{\lambda}\geq\nearrow-\lim_{n\to\infty}Y_{j_n}=\sup_{n\in\mathbb{N}}Y_{j_n}\geq\sup_{n\in\mathbb{N}}Y_{\lambda_n}=\operatorname{ess\,sup}_{\lambda\in\Lambda}Y_{\lambda}.$$

This gives the assertion.

q.e.d.