
Appendix D: The bipolar theorem

These notes provide a formulation of the bipolar theorem from functional analysis. We

formulate the result here for the setting we need, which means that we use the dual pair

(L∞, L1) with the duality pairing given by (Z, Y ) = E[ZY ] for Z ∈ L∞ and Y ∈ L1.

For a subset C ⊆ L∞, the polar of C in L1 is

C◦ := {Y ∈ L1 : (Z, Y ) ≤ 1 for all Z ∈ C}.

In the same way, the polar in L∞ of D ⊆ L1 is

D◦ := {Z ∈ L∞ : (Z, Y ) ≤ 1 for all Y ∈ D}.

The bipolar of C ⊆ L∞ is then the polar of C◦,

C◦◦ := (C◦)◦ ⊆ L∞.

It is easy to check that for any D ⊆ L1, the polar D◦ is a convex set in L∞, that 0 ∈ D◦

and that D◦ is σ(L∞, L1)-closed, i.e. weak* closed in L∞. If C ⊆ L∞ is a cone with vertex

at 0 (meaning that λC ⊆ C for all λ > 0), then we also have

C◦ = {Y ∈ L1 : (Z, Y ) ≤ 0 for all Z ∈ C};

so C◦ is then also a cone with vertex at 0, and hence

C◦◦ = {Z ∈ L∞ : (Z, Y ) ≤ 0 for all Y ∈ C◦}.

Theorem D.1. (Bipolar theorem) For any C ⊆ L∞, its bipolar C◦◦ is the σ(L∞, L1)-

closed convex hull of C ∪ {0}, i.e., the smallest convex and weak* closed subset of L∞

containing C and 0.

In particular, if C is a convex cone with vertex at 0, then C◦◦ is the weak* closure of C;

if in addition C is weak* closed, then C◦◦ = C.

Proof. See [1, Theorem IV.1.5].
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Remark. While the above result looks simple, it is not quite straightforward. In fact, the

argument for showing that the bipolar C◦◦ is contained in the σ(L∞, L1)-closed convex hull

of C∪{0} uses the separation theorem for convex sets and is thus based on the Hahn–Banach

theorem.
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