Mathematical Finance

Exercise sheet 4

Please hand in your solutions by Wednesday, 31.10.2018, 12:00 into your assistant's box next to HG G 53.2.

Exercise 4.1

- (a) Show that $d_0(Z^1, Z^2) := E[1 \land |Z^1 Z^2|]$ is a metric on L^0 and that $Z_n \to Z$ in probability iff $d_0(Z_n, Z) \to 0$. So d_0 metrizes the convergence in probability.
- (b) Recall from the lecture \mathbbm{L} (resp. $\mathbbm{D})$ of adapted LCRL (resp. RCLL) processes. Define

$$d(X^{1}, X^{2}) := E[1 \wedge (X^{1} - X^{2})_{T}^{*}] = E\left[1 \wedge \sup_{0 \le s \le T} |X_{s}^{1} - X_{s}^{2}|\right]$$

on \mathbb{L} (resp. \mathbb{D}). Assume that the filtration \mathbb{F} is complete. Show that both (\mathbb{L}, d) and (\mathbb{D}, d) are complete metric spaces.

(c) Show that $b\mathcal{E}_0$ is dense in \mathbb{L} for d.

Exercise 4.2

- (a) Show that a nonemepty subset $C \subseteq L^0$ is bounded in L^0 iff for every sequence $\lambda_n \downarrow 0$ in $(0, \infty)$, $\lambda_n c_n \to 0$ in L^0 for every sequence $(c_n)_{n \in \mathbb{N}} \subseteq C$.
- (b) Show that an adapted RCLL process X is a good integrator iff the set $I_X(H) = \{H \bullet X_T : H \in b\mathcal{E}, \|H\|_{\infty} \leq 1\}$ is bounded in L^0 .

Exercise 4.3

- (a) Let $(X^n)_{n \in \mathbb{N}} \subseteq \mathbb{D}$ be a sequence of local martingales converging to a limit X under the metric d. Suppose that $\sup_n |\Delta X^n|$ is locally integrable. Show that X is a local martingale.
- (b) Suppose that $M \in \mathcal{M}_{0,\text{loc}}$ and H is predictable and locally bounded. Show that $H \bullet M \in \mathcal{M}_{0,\text{loc}}$.

Exercise 4.4 The goal of this exercise is to establish some basic properties of optional quadratic variations. For two semimartingales X, Y, use polarization to define $[X, Y] = \frac{1}{4}([X + Y] - [X - Y])$.

(a) Establish the integration by parts formula

$$XY = X_0Y_0 + \int X_- \,\mathrm{d}Y + \int Y_- \,\mathrm{d}X + [X, Y].$$

- (b) Show that $\triangle[X,Y] = \triangle X \triangle Y$. In particular, $\triangle[X] = (\triangle X)^2$.
- (c) Show that $\sum_{s \leq t} (\Delta X_s)^2 < \infty$ *P*-a.s. for all $t \in [0, T]$.
- (d) Suppose X is a semimartingale and V is an FV process. Compute [X, V].

Exercise 4.5

- (a) Suppose that A is of FV and $(H^n)_{n \in \mathbb{N}} \subseteq b\mathcal{P}$ satisfies $||H^n||_{\infty} \leq 1$ and $H^n \to 0$ pointwise. Show that $d'_E(H^n \bullet A, 0) \to 0$.
- (b) For $M \in \mathcal{M}_{0,\text{loc}}$ and $(H^n)_{n \in \mathbb{N}} \subseteq b\mathcal{P}$ with $||H^n||_{\infty} \leq ||H||_{\infty} \forall n$, for $H \in b\mathcal{P}$ and $H^n \to H$ in $L^1(M)$ or pointwise, prove that $(H^n \bullet M)_{n \in \mathbb{N}}$ is Cauchy in (\mathcal{S}, d'_E) .
- (c) For $S \in \mathcal{S}$ and $H \in b\mathcal{P}_{loc}$, construct $H \bullet S$.