Mathematical Finance
 Exercise sheet 4

Please hand in your solutions by Wednesday, 31.10.2018, 12:00 into your assistant's box next to HG G 53.2.

Exercise 4.1

(a) Show that $d_{0}\left(Z^{1}, Z^{2}\right):=E\left[1 \wedge\left|Z^{1}-Z^{2}\right|\right]$ is a metric on L^{0} and that $Z_{n} \rightarrow Z$ in probability iff $d_{0}\left(Z_{n}, Z\right) \rightarrow 0$. So d_{0} metrizes the convergence in probability.
(b) Recall from the lecture \mathbb{L} (resp. \mathbb{D}) of adapted LCRL (resp. RCLL) processes. Define

$$
d\left(X^{1}, X^{2}\right):=E\left[1 \wedge\left(X^{1}-X^{2}\right)_{T}^{*}\right]=E\left[1 \wedge \sup _{0 \leq s \leq T}\left|X_{s}^{1}-X_{s}^{2}\right|\right]
$$

on \mathbb{L} (resp. \mathbb{D}). Assume that the filtration \mathbb{F} is complete. Show that both (\mathbb{L}, d) and (\mathbb{D}, d) are complete metric spaces.
(c) Show that $b \mathcal{E}_{0}$ is dense in \mathbb{L} for d.

Exercise 4.2

(a) Show that a nonemepty subset $C \subseteq L^{0}$ is bounded in L^{0} iff for every sequence $\lambda_{n} \downarrow 0$ in $(0, \infty), \lambda_{n} c_{n} \rightarrow 0$ in L^{0} for every sequence $\left(c_{n}\right)_{n \in \mathbb{N}} \subseteq C$.
(b) Show that an adapted RCLL process X is a good integrator iff the set $I_{X}(H)=$ $\left\{H \bullet X_{T}: H \in b \mathcal{E},\|H\|_{\infty} \leq 1\right\}$ is bounded in L^{0}.

Exercise 4.3

(a) Let $\left(X^{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{D}$ be a sequence of local martingales converging to a limit X under the metric d. Suppose that $\sup _{n}\left|\triangle X^{n}\right|$ is locally integrable. Show that X is a local martingale.
(b) Suppose that $M \in \mathcal{M}_{0, \text { loc }}$ and H is predictable and locally bounded. Show that $H \bullet M \in \mathcal{M}_{0, \text { loc }}$.

Exercise 4.4 The goal of this exercise is to establish some basic properties of optional quadratic variations. For two semimartingales X, Y, use polarization to define $[X, Y]=\frac{1}{4}([X+Y]-[X-Y])$.
(a) Establish the integration by parts formula

$$
X Y=X_{0} Y_{0}+\int X_{-} \mathrm{d} Y+\int Y_{-} \mathrm{d} X+[X, Y]
$$

(b) Show that $\triangle[X, Y]=\triangle X \triangle Y$. In particular, $\triangle[X]=(\triangle X)^{2}$.
(c) Show that $\sum_{s \leq t}\left(\triangle X_{s}\right)^{2}<\infty P$-a.s. for all $t \in[0, T]$.
(d) Suppose X is a semimartingale and V is an FV process. Compute $[X, V]$.

Exercise 4.5

(a) Suppose that A is of FV and $\left(H^{n}\right)_{n \in \mathbb{N}} \subseteq b \mathcal{P}$ satisfies $\left\|H^{n}\right\|_{\infty} \leq 1$ and $H^{n} \rightarrow 0$ pointwise. Show that $d_{E}^{\prime}\left(H^{n} \bullet A, 0\right) \rightarrow 0$.
(b) For $M \in \mathcal{M}_{0, \text { loc }}$ and $\left(H^{n}\right)_{n \in \mathbb{N}} \subseteq b \mathcal{P}$ with $\left\|H^{n}\right\|_{\infty} \leq\|H\|_{\infty} \forall n$, for $H \in b \mathcal{P}$ and $H^{n} \rightarrow H$ in $L^{1}(M)$ or pointwise, prove that $\left(H^{n} \bullet M\right)_{n \in \mathbb{N}}$ is Cauchy in $\left(\mathcal{S}, d_{E}^{\prime}\right)$.
(c) For $S \in \mathcal{S}$ and $H \in b \mathcal{P}_{\text {loc }}$, construct $H \bullet S$.

