Mathematical Finance
 Exercise sheet 6

Please hand in your solutions by Wednesday, 14.11.2018, 12:00 into your assistant's box next to HG G 53.2.

Exercise 6.1 The general Itô formula says that if X is a semimartingale with X, X_{-} taking values in an open set $U \subseteq \mathbb{R}$ and $f: U \rightarrow \mathbb{R}$ is a twice differentiable function, then $f(X)$ is again a semimartingale and

$$
\begin{aligned}
f\left(X_{t}\right)= & f\left(X_{0}\right)+\int_{0}^{t} f^{\prime}\left(X_{s-}\right) d X_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s-}\right) d[X]_{s} \\
& +\sum_{0<s \leq t}\left(\triangle f\left(X_{s}\right)-f^{\prime}\left(X_{s-}\right) \triangle X_{s}-\frac{1}{2} f^{\prime \prime}\left(X_{s-}\right) \triangle X_{s}^{2}\right) .
\end{aligned}
$$

(a) Show that if $Y>0$ is a semimartingale with $Y_{-}>0$, then $1 / Y$ is also a semimartingale. Where exactly do you use $Y_{-}>0$?
(b) Show that there is at most one numéraire portfolio.

Exercise 6.2

(a) Let Z be a strictly positive local martingale with $Z_{0}=1$ and S an adapted, continuous process with $S_{0}=0$ such that $Z S$ is a σ-martingale. Prove that $Z S$ is a local martingale.
(b) Show that if S admits a P-equivalent σ-martingale density and $Q \approx P$ on \mathcal{F}_{T}, then S also admits a Q-equivalent σ-martingale density.
Hint: You can use the fact that if M is a local martingale and H is predictable and locally bounded, then $H \bullet M$ is a local martingale.
(c) Show that for any $\operatorname{E} \sigma \mathrm{MD} Z$ for S and any $X \in \mathcal{X}^{1}$, the product $Z X$ is a P-supermartingale.

Exercise 6.3 Consider a stock price model based on a 2-dimensional Brownian motion (W, W^{\prime}) in the latter's own filtration, where the 1-dimensional (discounted) stock price follows

$$
d S_{t}=\mu_{t} d t+\sigma_{t} d W_{t}
$$

and $\mu_{t}=\mu\left(t, S_{t}, Y_{t}\right)$ and $\sigma_{t}=\sigma\left(t, S_{t}, Y_{t}\right)>0$ are determined by continuous functions depending on the diffusion Y which follows

$$
\begin{aligned}
d Y_{t} & =b\left(t, Y_{t}\right) d t+a\left(t, Y_{t}\right) d B_{t} \\
Y_{0} & =y_{0}
\end{aligned}
$$

Here B is a Brownian motion correlated to W, defined by

$$
B_{t}=\rho W_{t}+\sqrt{1-\rho^{2}} W_{t}^{\prime}
$$

for some constant $\rho \in(0,1)$. We assume that $\sigma>0$ and that the function $\frac{\mu}{\sigma}$ is uniformly bounded. The process Y is often called stochastic factor in this context.
(a) Show that $d\langle B, W\rangle_{t}=\rho d t$ and $d\langle S, Y\rangle_{t}=a\left(t, Y_{t}\right) \sigma\left(t, S_{t}, Y_{t}\right) \rho d t$.
(b) What is the general form of the density process of an ELMM Q for S ?
(c) Find the dynamics of S and Y under such a measure; that is, give stochastic differential equations for these processes involving only Brownian motions under Q, not under P.

