Mathematical Finance

Exercise sheet 6

Please hand in your solutions by Wednesday, 14.11.2018, 12:00 into your assistant's box next to HG G 53.2.

Exercise 6.1 The general Itô formula says that if X is a semimartingale with X, X_{-} taking values in an open set $U \subseteq \mathbb{R}$ and $f: U \to \mathbb{R}$ is a twice differentiable function, then f(X) is again a semimartingale and

$$f(X_t) = f(X_0) + \int_0^t f'(X_{s-}) dX_s + \frac{1}{2} \int_0^t f''(X_{s-}) d[X]_s + \sum_{0 < s < t} \left(\triangle f(X_s) - f'(X_{s-}) \triangle X_s - \frac{1}{2} f''(X_{s-}) \triangle X_s^2 \right).$$

- (a) Show that if Y > 0 is a semimartingale with $Y_{-} > 0$, then 1/Y is also a semimartingale. Where exactly do you use $Y_{-} > 0$?
- (b) Show that there is at most one numéraire portfolio.

Exercise 6.2

- (a) Let Z be a strictly positive local martingale with $Z_0 = 1$ and S an adapted, continuous process with $S_0 = 0$ such that ZS is a σ -martingale. Prove that ZS is a local martingale.
- (b) Show that if S admits a P-equivalent σ -martingale density and $Q \approx P$ on \mathcal{F}_T , then S also admits a Q-equivalent σ -martingale density.
 - *Hint:* You can use the fact that if M is a local martingale and H is predictable and locally bounded, then $H \bullet M$ is a local martingale.
- (c) Show that for any $E\sigma MD$ Z for S and any $X \in \mathcal{X}^1$, the product ZX is a P-supermartingale.

Exercise 6.3 Consider a stock price model based on a 2-dimensional Brownian motion (W, W') in the latter's own filtration, where the 1-dimensional (discounted) stock price follows

$$dS_t = \mu_t dt + \sigma_t dW_t$$

and $\mu_t = \mu(t, S_t, Y_t)$ and $\sigma_t = \sigma(t, S_t, Y_t) > 0$ are determined by continuous functions depending on the diffusion Y which follows

$$dY_t = b(t, Y_t)dt + a(t, Y_t)dB_t,$$

$$Y_0 = y_0.$$

Here B is a Brownian motion correlated to W, defined by

$$B_t = \rho W_t + \sqrt{1 - \rho^2} \ W_t'$$

for some constant $\rho \in (0,1)$. We assume that $\sigma > 0$ and that the function $\frac{\mu}{\sigma}$ is uniformly bounded. The process Y is often called *stochastic factor* in this context.

- (a) Show that $d\langle B,W\rangle_t=\rho dt$ and $d\langle S,Y\rangle_t=a(t,Y_t)\sigma(t,S_t,Y_t)\rho dt$.
- (b) What is the general form of the density process of an ELMM Q for S?
- (c) Find the dynamics of S and Y under such a measure; that is, give stochastic differential equations for these processes involving only Brownian motions under Q, not under P.