Mathematical Finance
 Exercise sheet 7

Please hand in your solutions by Wednesday, 05.12.2018, 12:00 into your assistant's box next to HG G 53.2.

Exercise 7.1 Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, P\right)$ be a filtered probability space satisfying the usual conditions. Moreover, let $X=\left(X_{t}\right)_{t \in[0, T]}$ be a a compound Poisson process with jump intensity $\lambda>0$ and jump distribution ν, i.e., $X_{t}:=\sum_{k=1}^{N_{t}} Y_{k}$, where $N=\left(N_{t}\right)_{t \in[0, T]}$ is a Poisson process with rate λ and $\left(Y_{k}\right)_{k \in \mathbb{N}}$ a sequence of random variables independent of N such that the Y_{k} are i.i.d. with distribution ν (with $\nu(\{0\})=0)$. Suppose that $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is such that X is a Lévy process with respect to $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$. Let $\widetilde{\lambda}>0$ and let $\widetilde{\nu} \approx \nu$ be an equivalent probability measure on \mathbb{R}. Define the exponential Lévy process $Z=\left(Z_{t}\right)_{t \in[0, T]}$ by

$$
Z_{t}:=\exp \left(\sum_{k=1}^{N_{t}} \phi\left(Y_{k}\right)+(\lambda-\tilde{\lambda}) t\right),
$$

where $\phi=\log \left(\frac{\widetilde{\lambda}}{\lambda} \frac{d \widetilde{\nu}}{d \nu}\right)$.
(a) Show that Z is a P-martingale.
(b) Define the probability measure $Q \approx P$ on \mathcal{F}_{T} by $d Q=Z_{T} d P$. Show that under Q, X is again a compound Poisson process for the filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ with rate $\widetilde{\lambda}$ and jump distribution $\widetilde{\nu}$.

Hint: Show that X is a Lévy process under Q for the filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$, and calculate the characteristic function of X_{1} under Q to determine its law (assuming without loss of generality that $T \geq 1$).

Exercise 7.2 Let (Ω, \mathcal{F}, P) be a probability space supporting a Poisson process $N=\left(N_{t}\right)_{t \in[0, T]}$ with rate $\lambda>0$. Denote by $\left(\mathcal{F}_{t}^{N}\right)_{t \in[0, T]}$ the natural (completed) filtration of N. Define the process $S=\left(S_{t}\right)_{t \in[0, T]}$ by $d S_{t}=S_{t-}\left(\mu d t+\frac{\sigma}{\sqrt{\lambda}} d \widetilde{N}_{t}\right)$, $S_{0}=s_{0}>0$, where $\mu \in \mathbb{R}, \sigma>0$ and $\widetilde{N}_{t}=N_{t}-\lambda t, t \geq 0$, denotes the compensated Poisson process. Assume that S satisfies NFLVR. Moreover, use without proof that the equivalent martingale measure Q^{λ} for S is unique. For $\rho>0$ denote by $\bar{\Psi}_{\rho}$ the tail distribution function of a Poisson random variable with parameter ρ, i.e., $\bar{\Psi}_{\rho}(x):=P\left[X_{\rho}>x\right]$, where X_{ρ} has a Poisson distribution with parameter ρ.
(a) Construct explicitly the EMM Q^{λ}.

Hint: You may use the remark after Exercise E.3.
(b) Show that the risk-neutral price of a cash-or-nothing call option with payoff $H=1_{\left\{S_{T}>K\right\}}$ with maturity T and strike $K>0$ is given by

$$
\bar{\Psi}_{\left(\lambda-\frac{\mu}{\sigma} \sqrt{\lambda}\right) T}\left(\frac{\log \frac{K}{S_{0}}+(\sigma \sqrt{\lambda}-\mu) T}{\log \left(1+\frac{\sigma}{\sqrt{\lambda}}\right)}\right) .
$$

Hint: Use that for a Lévy process R with triplet $\left(a, \sigma^{2}, \nu\right)$, the stochastic exponential of R is given by

$$
\mathcal{E}(R)_{t}:=\exp \left(R_{t}-\frac{1}{2} \sigma^{2} t\right) \prod_{0<s \leq t}\left(1+\Delta R_{s}\right) \exp \left(-\Delta R_{s}\right)
$$

(c) Show that the risk-neutral price of a stock-or-nothing call option with payoff $H=S_{T} 1_{\left\{S_{T}>K\right\}}$ with maturity T and strike $K>0$ is given by

$$
S_{0} \bar{\Psi}\left(1+\frac{\sigma}{\sqrt{\lambda}}\right)\left(\lambda-\frac{\mu}{\sigma} \sqrt{\lambda}\right) T\left(\frac{\log \frac{K}{S_{0}}+(\sigma \sqrt{\lambda}-\mu) T}{\log \left(1+\frac{\sigma}{\sqrt{\lambda}}\right)}\right)
$$

Hint: Define the measure $\widetilde{Q}^{\lambda} \approx Q^{\lambda}$ on \mathcal{F}_{T} by $\frac{d \widetilde{Q}^{\lambda}}{d Q^{\lambda}}:=S_{T} / S_{0}$, and work under this measure.
(d) Derive the risk-neutral price C_{0}^{λ} of a call option with payoff $H=\left(S_{T}-K\right)^{+}$ with maturity T and strike K. Moreover, show that

$$
\lim _{\lambda \rightarrow \infty} C_{0}^{\lambda}=S_{0} \Phi\left(\frac{\log \frac{S_{0}}{K}+\frac{\sigma^{2}}{2} T}{\sigma \sqrt{T}}\right)-K \Phi\left(\frac{\log \frac{S_{0}}{K}-\frac{\sigma^{2}}{2} T}{\sigma \sqrt{T}}\right)
$$

where Φ denotes the distribution function of a standard normal random variable. This means that for large λ, the arbitrage-free price in the Poisson model is very close to the Black-Scholes price with the same parameter σ.
Hint: Use that if X_{ρ} has a Poisson distribution with parameter ρ, then $\frac{X_{\rho}-\rho}{\sqrt{\rho}}$ converges weakly to a standard normal random variable for $\rho \rightarrow \infty$. Moreover, use the fact that if $\left(F_{n}\right)_{n \in \mathbb{N}}$ is a sequence of distribution functions converging pointwise to a continuous distribution function F, then the convergence is also uniform.

Exercise 7.3 In the Black-Scholes model, prove that the so-called digital option with undiscounted payoff $\tilde{H}=1_{\left\{\tilde{S}_{T}>\tilde{K}\right\}}, \tilde{K}>0$, is attainable, and calculate its arbitrage-free price process and the replicating strategy.

Exercise 7.4 Consider the one-period trinomial model. This means $T=1$, a constant bank account $B=1$, and the price process $\left(S_{t}\right)_{t \in\{0,1\}}$ has a constant $S_{0}>0$ and $S_{1}=S_{0} Z$ with Z taking three possible values $1+u>1+m>1+d$ under a given measure P. Moreover, assume $\Omega=\left\{\omega_{u}, \omega_{m}, \omega_{d}\right\}$, where $\omega_{u}=\{Z=1+u\}$, $\omega_{m}=\{Z=1+m\}$ and $\omega_{d}=\{Z=1+d\}$. Furthermore, let $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{1}=\sigma\left(S_{1}\right)$. For a probability measure Q, write $q_{i}=Q\left[\left\{\omega_{i}\right\}\right], i=u, m, d$. Assume that $P[\{\omega\}]>0$ for all $\omega \in \Omega$.
(a) For which $u>m>d$ is there arbitrage? In the case where NA holds true, characterize all equivalent local martingale measures in terms of q_{u}, q_{m}, q_{d}.
(b) Let $H=\left(S_{1}-K\right)^{+}$be a call option with strike $K>0$ satisfying $S_{0}(1+m)>K>S_{0}(1+d)$ and $S_{0} \neq K$. Show that H is not attainable.
(c) Assume that $u>0>d$. Let $H=\left(S_{1}-K\right)^{+}$be a call option with strike $K>0$. Compute its superreplication price $\pi^{s}(H)$. Moreover, prove that there exists a martingale measure Q_{a} absolutely continuous with respect to P such that $\pi^{s}(H)=E_{Q_{a}}[H]$.

Exercise 7.5 Consider a market in finite discrete time with \mathcal{F}_{0} being trivial.
(a) Prove or disprove:

1. (S, \mathbb{F}) is complete implies that $\#\left(\mathbb{P}_{e}\right) \leq 1$.
2. $\#\left(\mathbb{P}_{\mathrm{e}}\right) \leq 1$ implies that (S, \mathbb{F}) is complete.
(b) Prove that if NA holds, then $\inf _{Q \in \mathbb{P}_{e}(S)} E_{Q}[H]<\infty$ for any $H \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$.

Exercise 7.6 We consider a generalized Black-Scholes model with a bank account $B \equiv 1$ and a stock

$$
\frac{d S_{t}}{S_{t}}=b\left(\omega^{\prime}\right) d t+\sigma\left(\omega^{\prime}\right) d W_{t}, \quad S_{0}>0 \text { deterministic. }
$$

Here W is a Brownian motion under P in the filtration \mathbb{F} and $b, \sigma>0$ are random variables which are P-independent of W.
(a) Construct a minimal probability space for such a model.
(b) Describe the set $\mathbb{P}_{\mathrm{e}, \text { loc }}$ of equivalent local martingale measures for S in (a).
(c) Let $H=\left(S_{T}-K\right)^{+}$be a (discounted) call option. Recall from the lecture the function $u_{B S}(t, x, v)$ for the (discounted) price of the call at time t for known and fixed volatility v and current stock price $x=S_{t}$. Prove that for each $Q \in \mathbb{P}_{\mathrm{e}, \text { loc }}$, we have

$$
E_{Q}[H]=E_{Q}\left[u_{B S}\left(0, S_{0}, \sigma\right)\right]=\int_{0}^{\infty} u_{B S}\left(0, S_{0}, v\right) \nu_{\sigma}^{Q}(d v)
$$

where ν_{σ}^{Q} is the distribution of σ under Q.
(d) Assume that σ is neither bounded away from zero nor from infinity. Show that

$$
\pi_{s}(H)=S_{0} \quad \text { and } \quad \pi_{b}(H)=\left(S_{0}-K\right)^{+}
$$

What does this mean for the superreplicating (subreplicating) strategies?
Hint: Recall

$$
u_{B S}\left(0, S_{0}, v\right)=S_{0} \Phi\left(d_{+}\right)-K \Phi\left(d_{-}\right), \quad d_{ \pm}:=\frac{1}{v \sqrt{T}}\left\{\log \left(S_{0} / K\right) \pm \frac{1}{2} v^{2} T\right\} .
$$

Remark: An analogous result is true in a fairly large class of stochastic volatility models.

