Mathematical Finance
 Exercise sheet 8

Please hand in your solutions by Wednesday, 19.12.2018, 12:00 into your assistant's box next to HG G 53.2.

Exercise 8.1 Consider a financial market modeled by a semimartingale S satisfying $\mathbb{P}_{e, \sigma}(S) \neq \varnothing$.
(a) A mapping $\rho: L^{\infty} \rightarrow \mathbb{R}$ is said to be a coherent risk measure if it satisfies
i) $H \leq H^{\prime} P$-a.s. implies $\rho(H) \geq \rho\left(H^{\prime}\right)$;
ii) $\rho(H+c)=\rho(H)-c$ for all $c \in \mathbb{R}$;
iii) $\rho(\lambda H) \leq \lambda \rho(H)$ for all $\lambda \geq 0$;

Show that $\rho:=-\pi^{s}$ is a coherent risk measure.
Hint: Use only the definition of π^{s}.
(b) i) Show that S satisfies NA iff $g:=0$ is maximal in $\mathcal{G}_{\text {adm }}$.
ii) Suppose that $S=\left(S_{k}\right)_{k=0,1, \ldots, T}$ is a discrete-time process with $T<\infty$. Denote by Θ the space of all predictable processes. Show that if S satisfies NA, then neither $\mathcal{G}_{\text {adm }}$ nor $G_{T}(\Theta)$ contains any non-maximal element.

Exercise 8.2 Let $U:(0, \infty) \rightarrow \mathbb{R}$ be concave and increasing. For $x>0$, define $u(x):=\sup _{V \in \mathcal{V}(x)} E\left[U\left(V_{T}\right)\right]$, where $\mathcal{V}(x):=\left\{x+\vartheta \bullet S: \vartheta \in \Theta_{\mathrm{adm}}^{x}\right\}$.
(a) Show that u is concave and increasing.
(b) If additionally $u\left(x_{0}\right)<\infty$ for some $x_{0}>0$, show that $u(x)<\infty$ for all $x>0$.
(c) If U is strictly increasing with $U(\infty)<\infty$ and S satisfies NFLVR, then $u(x)<U(\infty)$ for all $x>0$.

Exercise 8.3 Consider a financial market modeled by an \mathbb{R}^{d}-valued semimartingale S satisfying NFLVR. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be a utility function such that $u(x)<\infty$ for some $x \in(0, \infty)$.
(a) Assume that the market is complete in the sense that there exists a unique E σ MM Q on \mathcal{F}_{T}. Fix $z>0$. Show that $h \leq z \frac{\mathrm{~d} Q}{\mathrm{~d} P} P$-a.s. for all $h \in \mathcal{D}(z)$. Deduce that

$$
j(z)=E\left[J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)\right]
$$

(b) Consider the Black-Scholes market $\left(\tilde{S}^{0}, \tilde{S}^{1}\right)$ given by

$$
\begin{aligned}
\mathrm{d} \tilde{S}_{0}^{0} & =r \tilde{S}_{t}^{0} \mathrm{~d} t, \quad \tilde{S}_{0}^{0}=1 \\
\mathrm{~d} \tilde{S}_{t}^{1} & =\tilde{S}_{t}^{1}\left(\mu \mathrm{~d} t+\sigma \mathrm{d} W_{t}\right), \quad \tilde{S}_{0}^{1}=s>0
\end{aligned}
$$

Denote by S^{1} the discounted stock price. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be defined by $U(x):=\frac{1}{\gamma} x^{\gamma}$, where $\gamma \in(-\infty, 1) \backslash\{0\}$. Show that for $z>0$,

$$
j(z)=\frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} \exp \left(\frac{1}{2} \frac{\gamma}{(1-\gamma)^{2}} \frac{(\mu-r)^{2} T}{\sigma^{2}}\right)
$$

(c) Show in general that

$$
j(z)=\inf _{Q \in \mathbb{P}_{e, \sigma}} E\left[J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)\right] .
$$

Hint: Modify the argument in (a) by showing that for any $h \in \mathcal{D}(z)$, we have $h \leq z \frac{\mathrm{~d} Q}{\mathrm{~d} P}$ for some $Q \in \mathbb{P}_{e, \sigma}$.

