Mathematical Finance

Exercise sheet 9

Exercise 9.1 Let U be a utility function on $(0, \infty)$ satisfying the Inada conditions. Its asymptotic elasticity at $+\infty$ is

$$AE_{+\infty}(U) = \limsup_{x \to \infty} \frac{xU'(x)}{U(x)}.$$

- (a) Prove that $AE_{+\infty}(U) \leq 1$.
- (b) Assume $U(\infty) > 0$. Show that

$$AE_{+\infty}(U) = \inf\{\gamma > 0 : \exists x_0 \text{ s.t. } U(\lambda x) < \lambda^{\gamma} U(x) \ \forall \lambda > 1, x \ge x_0\}.$$

(c) Prove that $AE_{+\infty}(U) < 1$ implies both $u'(\infty) = 0$ and $AE_{+\infty}(u) < 1$.

Hint: You may use the fact that two concave functions f, g with $f(\infty) > 0, g(\infty) > 0$ have $AE_+(f) = AE_+(g)$ if there exists C > 0 such that $g(x) - C \le f(x) \le g(x) + C$ for large x.

Exercise 9.2 For each n, set $J_n(z) := \sup_{x \in (0,n]} (U(x) - xz)$ for z > 0. Prove that

$$E[J_n(h)] = \sup_{f \in \mathcal{B}_n} E[U(f) - fh].$$

Exercise 9.3 Let S be an \mathbb{R} -valued semimartingale of the form

$$S = S_0 + M + \int \lambda \, \mathrm{d} \langle M \rangle,$$

where M is a continuous local martingale null at 0 and λ is a predictable process such that the mean-variance tradeoff process $K = \int \lambda_s^2 d\langle M \rangle_s$ is bounded. Define $\hat{Z} := \mathcal{E}(-\lambda \bullet M)$ and $\frac{d\hat{P}}{dP} := \hat{Z}_T$.

- (a) Show that $\hat{P} \in \mathbb{P}_{e,loc}(S)$.
- (b) Show that both $\frac{d\hat{P}}{dP}$ and $\frac{dP}{d\hat{P}}$ have moments of all orders.

Updated: December 18, 2018