Mathematical Finance

Solution sheet 1

Solution 1.1

(a) Suppose that S is adapted and RCLL.

Regularity: Obviously, S_t^* is increasing in t. Fix $t_0 \geq 0$. Then for *P*-a.a. ω , $\lim_{t \downarrow t_0} S_t^*(\omega)$ exists in $[-\infty, \infty)$ and we have $\lim_{t \downarrow t_0} S_t^*(\omega) \geq S_{t_0}^*(\omega)$. Now by the right-continuity of $S(\omega)$, for every $\varepsilon > 0$ we can find $\delta > 0$ such that $|S_{t_0+\eta}(\omega) - S_{t_0}(\omega)| < \varepsilon$ whenever $0 \leq \eta \leq \delta$. Thus $|S_{t_0+\eta}^*(\omega) - S_{t_0}^*(\omega)| \leq \sup_{0 \leq \eta \leq \delta} |S_{t_0+\eta}(\omega) - S_{t_0}(\omega)| \leq \varepsilon$ whenever $0 \leq \eta \leq \delta$. This shows that $S^*(\omega)$ is right-continuous.

By a similar argument, it is easy to show that $S^*(\omega)$ has left limits.

Again fix $t_0 \geq 0$. It is easy to show that for *P*-a.a. ω , for each T > 0, $S(\omega)$ is bounded on [0, T]. From $|A_{t_0+\eta}(\omega) - A_{t_0}(\omega)| \leq \int_{t_0}^{t_0+\eta} |S_r(\omega)| \, \mathrm{d}r$, we even obtain that $A(\omega)$ is continuous.

Adaptedness: For each $t \ge 0$, since S is RCLL, we have $S_t^* = \sup_{r \in \mathbb{Q} \cap [0,t]} S_r$, showing that S_t^* is \mathcal{F}_t -measurable.

To show that A is adapted, consider $S^n = \sum_{k=1}^{\infty} \mathbb{1}_{\{(k-1)/n < t \le k/n\}} S_{(k-1)/n}$. Because S is P-a.s. bounded on [0,t], $S^n \to S$ uniformly on [0,t] P-a.s. Now since $r \mapsto A_r$ is continuous, it suffices to show that for each s < t, A_s is \mathcal{F}_s -measurable. Set $K(n) = \sup\{k : k/n \le s\}$. Then clearly

$$\int_{0}^{s} S_{r} \, \mathrm{d}r = \lim_{n \to \infty} \int_{0}^{s} S_{r}^{n} \, \mathrm{d}r = \lim_{n \to \infty} \sum_{k=1}^{K(n)} \frac{S_{(k-1)/n}}{n} \quad P\text{-a.s.}$$

So A_s is *P*-a.s. equal to an \mathcal{F}_s -measurable random variable and therefore \mathcal{F}_s -measurable because \mathbb{F} is complete.

(b) If S is adapted and continuous, then by (a) both S^* and A are continuous and adapted. Therefore, $t \mapsto f(S_t, S_t^*, A_t)$ as a composition of continuous functions is continuous and adapted. Hence ϑ is predictable.

If S is only RCLL and adapted, the statement is not true. It is enough to consider an example where S is RCLL and adapted, but not predictable. An easy example on [0, 1] is that $X_t = \mathbb{1}_{\{1/2 \le t \le 1\}} B$ with its natural filtration, where B is a (nondegenerate) Bernoulli random variable. Obviously X is RCLL and adapted (to its natural filtration). But since X is 0 on [0, 1/2), any adapted and left-continuous process must be constant on [0, 1/2]. So the same should be true for any predictable process.

Updated: September 20, 2018

Now simply take f(x, y, z) = x, giving $\vartheta = S$, which is not predictable.

Solution 1.2 Start with a geometric Brownian motion with $\mu = 0$, $\sigma = 1$, so that $\bar{S}_t = \exp(W_t - t/2)$. It is clear that $\bar{S}_t \to 0$ as $t \to \infty$ a.s. So the stopping time $\bar{\tau} := \inf\{t \ge 0 : \bar{S}_t = 1/2\}$ is a.s. finite. Set $\psi(t) := \tan t$ and $S_t := \bar{S}_{\psi(t)}$ for $t \in [0, \pi/2)$ and $S_{\pi/2} = 0$. This yields again a continuous process S and a stopping time $\tau := \psi^{-1} \circ \bar{\tau}$ with $\tau \in [0, \pi/2)$ a.s. Thus we can use the predictable, self-financing strategy φ with $v_0 = 0$ and going short on $[0, \tau]$, i.e., $\vartheta_t := -\mathbb{1}_{[0,\tau]}(t)$ (which is adapted and left-continuous). It follows that

$$V(\varphi) = \int \vartheta \, \mathrm{d}S = -(S^{\tau} - S_0).$$

So we end up with $V_{\pi/2}(\varphi) = S_0 - S_{\pi/2}^{\tau} = S_0 - S_{\tau} = 1/2$, which gives an arbitrage.

Solution 1.3

(a) First note that the left-continuous function $\operatorname{sgn}(x)$ can be approximated pointwise by a sequence (g_n) of continuous functions and each $g_n(X)$ as a continuous adapted process is therefore predictable. Hence, as $\operatorname{sgn}(X) = \lim_{n \to \infty} g_n(X)$, we can conclude that $\operatorname{sgn}(X)$ is also predictable and of course bounded. In particular, this ensures that the stochastic integral $\int_0^{\cdot} \operatorname{sgn}(X) dX$ is well-defined. An alternative proof is to note that X as a continuous, adapted process is predictable and $\operatorname{sgn}(x)$ is Borel-measurable, so that the composition $\operatorname{sgn}(X)$ is also predictable.

Next, according to the given hint, we have a family of convex C^2 -functions f_h such that $f_h(x) = -x$ for $x \leq 0$, $f_h(x) = x - h$ for $x \geq h$ and $f_h(x) \to |x|$, $f'_h(x) \to \operatorname{sgn}(x)$ for all x as $h \to 0$. Note that since f_h is convex, its first derivative f'_h is increasing and therefore by our construction it holds that $|f'_h(x)| \leq 1$ for all $x \in \mathbb{R}$.

Now applying Itô's formula for each $f_h(X)$, we obtain that

$$f_h(X_t) - f_h(0) - \int_0^t f'_h(X_s) \, dX_s = \frac{1}{2} \int_0^t f''_h(X_s) \, d[X]_s. \tag{1}$$

Since $\lim_{h\to 0} f'_h(x) = \operatorname{sgn}(x)$ and $|f'_h(x)| \leq 1$ for all $x \in \mathbb{R}$, the dominated convergence theorem for stochastic integrals implies that

$$\lim_{h \to 0} \int_0^{\cdot} f_h'(X_s) \, dX_s = \int_0^{\cdot} \operatorname{sgn}(X_s) \, dX_s$$

uniformly on any compact interval [0, t] in probability (which will be denoted by u.c.p). Consequently, as $f_h(x) \to |x|$, we actually get

$$\lim_{h \to 0} \left(f_h(X_t) - f_h(0) - \int_0^t f'_h(X_s) \, dX_s \right) = |X_t| - |X_0| - \int_0^t \operatorname{sgn}(X_s) \, dX_s = L_t^X(0)$$

Updated: September 20, 2018

2/4

u.c.p. In view of (1), the equation above is equivalent to

$$L_t^X(0) = \lim_{h \to 0} \frac{1}{2} \int_0^t f_h''(X_s) \, d[X]_s,$$

u.c.p. Now note that $d[X]_s$ is a nonnegative (random) measure and $f''_h \ge 0$ due to the convexity of f_h . So we can conclude that $t \mapsto \frac{1}{2} \int_0^t f''_h(X_s) d[X]_s$ is a increasing process for each h > 0 and therefore as the limit of increasing processes, $L_t^X(0)$ is also increasing in t.

Furthermore, by definition, we easily see that $L^X(0)$ has continuous trajectories and satisfies $L_0^X(0) = 0$. The latter together with the increasing property ensures that $L^X(0)$ is nonnegative.

(b) Clearly, $(X_t - K)^+ = \frac{1}{2}(|X_t - K| + (X_t - K))$. By the definition of the local time at K, we get immediately that

$$|X_t - K| = |X_0 - K| + \int_0^t \operatorname{sgn}(X_s - K) \, dX_s + L_t^X(K).$$

On the other hand, by Itô's formula, we have

$$X_t - K = X_0 - K + \int_0^t 1 \, dX_s.$$

Hence, we obtain

$$(X_t - K)^+ = \frac{1}{2} \left(|X_0 - K| + (X_0 - K) + \int_0^t (1 + \operatorname{sgn}(X_s - K)) dX_s + L_t^X(K) \right)$$

= $(X_0 - K)^+ + \int_0^t \mathbbm{1}_{\{X_s > K\}} dX_s + \frac{1}{2} L_t^X(K).$

Solution 1.4

- (a) Apply Itô's formula to $S_t = s_0 \exp(\sigma W_t + (\mu \frac{1}{2}\sigma^2)t)$ to see that S satisfies the desired dynamics $dS_t = S_t(\mu dt + \sigma dW_t)$.
- (b) Note that $\{S_t > K\} = \{W_t > \frac{1}{\sigma}(\log(K/s_0) (\mu \frac{1}{2}\sigma^2)t)\}$. Since under the measure P, the random variable W_t has a normal distribution, we get

$$P[S_t > K] = P\left[W_t > \frac{1}{\sigma}(\log(K/s_0) - (\mu - \sigma^2/2)t)\right] > 0.$$

Similarly we have $P[S_t < K] > 0$.

(c) Let Q be an equivalent measure on \mathcal{F}_T for S such that S is a martingale with respect to Q. Recall that (see Exercise 1.3, (b))

$$(S_t - K)^+ = (S_0 - K)^+ + \int_0^t \mathbb{1}_{\{S_s > K\}} dS_s + \frac{1}{2} L_t^S(K),$$

Updated: September 20, 2018

3/4

and also note that with S being a Q-martingale, the stochastic integral $\int_0^{\cdot} \mathbb{1}_{\{S_s > K\}} dS_s$ is also a Q-martingale. Hence, taking the Q-expectation of both sides of the equation above, we get

$$E_Q[(S_t - K)^+] - E_Q[(S_0 - K)^+] = \frac{1}{2}E_Q[L_t^S(K)].$$

Since Q is equivalent to P, we can derive from (b) that $Q[S_t > K] > 0$ and $Q[S_t < K] > 0$. Consequently, since the function $g(x) := (x - K)^+$ is strictly convex on any interval containing K, Jensen's inequality applied for $E_Q[g(S_t)]$ is strict and therefore

$$\frac{1}{2}E_Q[L_t^S(K)] = E_Q[g(S_t)] - E_Q[g(S_0)] > g(E_Q[S_t]) - g(s_0) = g(s_0) - g(s_0) = 0.$$

It follows that $Q[L_t^S(K) > 0] > 0$ and of course also $P[L_t^S(K) > 0] > 0$.

(d) We first observe that the portfolio value at time t > 0 is given by

$$V_t = \varphi_t^0 \, 1 + \vartheta_t S_t = -K \mathbf{1}_{\{S_t > K\}} + \mathbf{1}_{\{S_t > K\}} S_t = \max(0, S_t - K) = (S_t - K)^+.$$

By definition, (φ^0, ϑ) is self-financing if and only if for any t > 0,

$$V_t = V_0 + \int_0^t \vartheta_s \, dS_s. \tag{2}$$

Now by Exercise 1.3, (b) and noting that $V_0 = (S_0 - K)^+$, we have

$$V_t = (S_t - K)^+ = (S_0 - K)^+ + \int_0^t \mathbb{1}_{\{S_s > K\}} dS_s + \frac{1}{2} L_t^S(K).$$
(3)

Thus, we see from the comparison of (2) with (3) that (φ^0, ϑ) is self-financing if and only if for any t > 0, $L_t^S(K)$ is equal to zero *P*-a.s. But we know from (c) that $L_t^S(K) \ge 0$ *P*-a.s. and $P[L_t^S(K) > 0] > 0$, and hence (φ^0, ϑ) is not self-financing.