Mathematical Finance
 Solution sheet 2

Solution 2.1 (a) By definition, NA means $\mathcal{G}\left(\Theta_{\mathrm{adm}}\right) \cap L_{+}^{0}=\{0\}$. So assuming the latter gives that for all $\vartheta \in \Theta_{\text {adm }}$,

$$
H=G_{T}(\vartheta)=G_{T}(\vartheta)-0 \geq 0 P \text {-a.s. } \Longrightarrow G_{T}(\vartheta)=0 P \text {-a.s. }
$$

by setting $Y=0$. Conversely, if $H=G_{T}(\vartheta)-Y \geq 0$ for some $\vartheta \in \Theta_{\text {adm }}$ and $Y \in L_{+}^{0}$, then $G_{T}(\vartheta)=H+Y \geq 0 P$-a.s.. So $G_{T}(\vartheta) \in \mathcal{G}_{T}\left(\Theta_{\text {adm }}\right) \cap L_{+}^{0}$ and NA implies $G_{T}(\vartheta)=0 P$-a.s. which shows $H=Y=0 P$-a.s.. Therefore $\mathcal{C}_{\text {adm }}^{0} \cap L_{+}^{0}=\{0\}$.
(b) The above proof gives $H=-Y \geq 0$ and therefore does not involve the admissibility. So the same argument works.
(c) Part (a) gives " \Longrightarrow ". To prove the converse, take $H \in \mathcal{C}_{\text {adm }}^{0} \cap L_{+}^{0}$ and set $H^{n}:=H \wedge n \in\left(\mathcal{C}_{\mathrm{adm}}^{0} \cap L^{\infty}\right) \cap L_{+}^{0}$. To see this, note that $H=G_{T}(\vartheta)-Y$ because $H \in \mathcal{C}_{\text {adm }}^{0}$ and $H \wedge n=H-(H-n)^{+}=G_{T}(\vartheta)-\left(Y+(H-n)^{+}\right)=G_{T}(\vartheta)-Y^{\prime}$. By assumption, $H^{n}=0$ for all n and $H^{n} \rightarrow H P$-a.s., giving $H=0$ as desired.
(d) Recall that in Exercise 1.2, we constructed a process $S_{t}=\exp \left(W_{\tan t}-\tan t / 2\right)$ for $0 \leq t<\pi / 2$ and $S_{\pi / 2}=0$. Obviously, S is a local martingale on $[0, \pi / 2$], but not a martingale. Now we just take $\vartheta_{t}=-\mathbb{1}_{(0, \pi / 2]}(t)$. Then

$$
G_{\pi / 2}(\vartheta)=-\left(S_{\pi / 2}-S_{0}\right)=1
$$

which gives an elementary arbitrage opportunity. Note that $G(\vartheta)=-\left(S-S_{0}\right)=1-S$ is not uniformly bounded from below. If $G(\vartheta)$ is uniformly bounded from below, then S is bounded from above. But $S \geq 0$ gives that S is bounded and therefore S must be a martingale, which is a contradiction.

Solution 2.2 (a) First $G_{T}(\vartheta) \in \mathcal{C}_{\text {adm }}^{0}$ gives $G_{T}(\vartheta) \wedge n \in \mathcal{C}_{\text {adm }}^{0} \wedge L^{\infty}$ for each $n \in \mathbb{N}$. So, $E\left[G_{T}(\vartheta) \wedge n\right] \leq 0, \forall n$. Note that $G_{T}(\vartheta) \wedge n \uparrow G_{T}(\vartheta)$ and $G_{T}(\vartheta) \geq-a$, so by monotone convergence, $E\left[G_{T}(\vartheta)\right] \leq 0$.
(b) Adaptedness is given directly. Because S is locally bounded, it suffices to show that if S is bounded, then S satisfies the martingale property. Note that since S is bounded, any bounded predictable process $\vartheta \in \Theta_{\mathrm{adm}}$, as is then $-\vartheta$; so part (a) gives $E_{Q}[-G(\vartheta)] \leq 0$ for all bounded predictable ϑ. Fix $m<n$ and $A \in \mathcal{F}_{m}$. Consider $\bar{\vartheta}:=\mathbb{1}_{A} \mathbb{1}_{\{m<t \leq n\}}$. Then

$$
E_{Q}\left[G_{T}(\bar{\vartheta})\right]=E_{Q}\left[\mathbb{1}_{A}\left(S_{n}-S_{m}\right)\right]=0
$$

Since this holds for all $A \in \mathcal{F}_{m}$, the process S satisfies the martingale property under Q.

Solution 2.3 (a) Define

$$
k^{*}:=\min \left\{k \in\{1, \ldots, N\}: G_{\tau_{k}}(\vartheta) \in L_{+}^{0} \backslash\{0\}\right\}
$$

and set $\sigma_{0}:=\tau_{k^{*}-1}$ and $\sigma_{1}:=\tau_{k^{*}}$. Observe that k^{*} is deterministic. Moreover, set

$$
h:= \begin{cases}h^{k^{*}} & \text { if } P\left[G_{\tau_{k^{*}-1}}(\vartheta)=0\right]=1 \\ \left.h^{k^{*}} 1_{\left\{G_{\tau_{k^{*}-1}}\right.}(\vartheta)<0\right\} & \text { if } P\left[G_{\tau_{k^{*}-1}}(\vartheta)=0\right]<1\end{cases}
$$

In words, we wait until $G .(\vartheta)$ first becomes genuinely positive and then use the single step of ϑ from the previous τ_{k-1} on the set where the previous gains were zero or genuinely negative. Note that $P\left[G_{\tau_{k^{*}-1}}(\vartheta)<0\right]>0$ in the second case by the definition of k^{*}. We claim that $\vartheta^{*}:=h 1_{\rrbracket \sigma_{0}, \sigma_{1} \rrbracket} \in \mathbf{b} \mathcal{E}$ is an arbitrage opportunity. Indeed, in the first case,

$$
G_{T}\left(\vartheta^{*}\right)=G_{\tau_{k^{*}}}(\vartheta)-G_{\tau_{k^{*}-1}}(\vartheta)=G_{\tau_{k^{*}}}(\vartheta) \in L_{+}^{0} \backslash\{0\}
$$

and in the second case,

$$
\begin{aligned}
G_{T}\left(\vartheta^{*}\right) & \left.=\left(G_{\tau_{k^{*}}}(\vartheta)-G_{\tau_{k^{*}-1}}(\vartheta)\right) 1_{\left\{G_{\tau_{k^{*}-1}}\right.}(\vartheta)<0\right\} \\
& \left.\geq-G_{\tau_{k^{*}-1}}(\vartheta) 1_{\left\{G_{\tau_{k^{*}-1}}\right.}(\vartheta)<0\right\} \in L_{+}^{0} \backslash\{0\} .
\end{aligned}
$$

(b) Let $a \geq 0$ be such that $G .(\vartheta) \geq-a \quad P$-a.s. By right-continuity of the paths of G.(ϑ), it suffices to show $G_{t}(\vartheta) \geq-c \quad P$-a.s. for any $t \in[0, T)$. Seeking a contradiction, assume there is $t \in[0, T)$ such that $P\left[G_{t}(\vartheta)<-c\right]>0$. But then $\vartheta^{*}:=\vartheta 1_{\left\{G_{t}(\vartheta)<-c\right\} \times(t, T]}$ is predictable, S-integrable (see hints) and satisfies

$$
\begin{aligned}
G .\left(\vartheta^{*}\right) & =\left(G .(\vartheta)-G_{t}(\vartheta)\right) 1_{\left\{G_{t}(\vartheta)<-c\right\} \times(t, T]} \geq-a+c, \\
G_{T}\left(\vartheta^{*}\right) & =\left(G_{T}(\vartheta)-G_{t}(\vartheta)\right) 1_{\left\{G_{t}(\vartheta)<-c\right\}} \geq\left(-c-G_{t}(\vartheta)\right) 1_{\left\{G_{t}(\vartheta)<-c\right\}} .
\end{aligned}
$$

But this shows both that ϑ^{*} is admissible and that S fails NA, in contradiction to the hypothesis.

Solution 2.4 (a) By ii), $(L+M)^{2}-[L+M]$ and $(L-M)^{2}-[L-M]$ are UI martingales. So $L M-[L, M]=\frac{1}{4}\left((L+M)^{2}-[L+M]-\left((L-M)^{2}-[L-M]\right)\right)$ is a UI martingale. Also, as a difference of two increasing processes, $[L, M]$ is a finite variation process. Suppose B is anothe process satisfying the characterizing properties. Then $B-[L, M]=(B-L M)+(L M-[L, M])$ is a UI martingale, null at 0 , and of finite variation. Moreover, $\triangle(B-[L, M])=\triangle L \triangle M-\triangle L \triangle M=0$. Therefore, $B-[L, M]$ is a continuous martingale and of finite variation, null at 0 and hence B and $[L, M]$ are indistinguishable.
(b) Symmetry follows directly from the definition. Suppose $L, M, N \in \mathcal{H}_{0}^{2}$. Then $(L+M) N-[L+M, N]=\frac{1}{4}(L+M+N)^{2}-(L+M-N)^{2}-([L+M+N]-[L+M-N])$
which is a UI martingale. Also,

$$
\triangle[L+M, N]=\triangle(L+M) \triangle N=\triangle L \triangle N+\triangle M \triangle N=(\triangle[L, N]+\triangle[M, N])
$$

So, by the uniqueness of $[\cdot, \cdot]$, we have the bilinearity.
(c) Let τ be a stopping time. Clearly $L^{\tau} \in \mathcal{H}_{0}^{2, c}$ and $M^{\tau} \in \mathcal{H}_{0}^{2, d}$. So

$$
E\left[L_{\tau} M_{\tau}\right]=E\left[L_{\infty}^{\tau} M_{\infty}^{\tau}\right]=0
$$

and therefore $L M$ is a UI martingale. We also have $\triangle[L, M]=\triangle L \triangle M=0$, where we used that L is continuous. Thus $[L, M]$ is continuous. Since $L M$ and $L M-[L, M]$ are both UI martingales, $[L, M]$ is also a UI martingale. Then $[L, M]$ is a continuous martingale of finite variation and null at 0 , so we must have $[L, M] \equiv 0$.
(d) By bilinearity and stopping, we only need to show that if $M \in \mathcal{H}_{0}^{2, d}$ then

$$
[M]=\sum_{0<s \leq .}\left(\triangle M_{s}\right)^{2} .
$$

Denote the process on the right hand side by R. Let τ be a stopping time. Then

$$
E\left[M_{\tau}^{2}-R_{\tau}\right]=E\left[\left(M_{\infty}^{\tau}\right)^{2}-R_{\infty}^{\tau}\right]=0
$$

by fact i) showing that $M^{2}-R$ is a UI martingale. Since R is clearly an increasing, adapted, RCLL process, we just need to check the jump property. Indeed,

$$
\triangle R_{t}=\sum_{0 \leq s \leq t}\left(\triangle M_{s}\right)^{2}-\sum_{0 \leq s \leq t-}\left(\triangle M_{s}\right)^{2}=\left(\triangle M_{t}\right)^{2} .
$$

So by the uniqueness of $[M]$, we have $[M]=R$.
(e) Obviously, $X_{0}=0 P$-a.s.. For each $t \geq 0$, we have

$$
\begin{aligned}
E\left[X_{t}\right] & =\sum_{n=1}^{\infty} E\left[\sum_{k=1}^{n} Y_{k} \mid N_{t}=n\right] P\left[N_{t}=n\right]-\mu \lambda t \\
& =\sum_{n=1}^{\infty} E\left[\sum_{k=1}^{n} Y_{k}\right] e^{-\lambda t} \frac{\lambda^{n} t^{n}}{n!}-\mu \lambda t \\
& =\sum_{n=1}^{\infty} \mu n e^{-\lambda t} \frac{\lambda^{n} t^{n}}{n!}-\mu \lambda t \\
& =\mu \lambda t \sum_{n=0}^{\infty} e^{-\lambda t} \frac{\lambda^{n} t^{n}}{n!}-\mu \lambda t=0, \\
E\left[X_{t}^{2}\right] & =\operatorname{Var}\left(\sum_{k=1}^{N_{t}} Y_{k}\right)=\operatorname{Var}\left(Y_{k}\right) E\left[N_{t}\right]+E\left[Y_{k}\right]^{2} \operatorname{Var}\left(N_{t}\right)=\left(\sigma^{2}+\mu^{2}\right) \lambda t .
\end{aligned}
$$

So X_{t} for each $t \geq 0$ is square-integrable. Moreover, X is a martingale because of the independent and stationary increments and $E\left[X_{t}\right]=0$. Now note that since $Y_{k} \neq 0 P$-a.s., X has a jump iff N has a jump. Define $\tau_{n}:=\inf \left\{t \geq 0: N_{t}=n\right\}$.

We know that $\tau_{n} \sim \operatorname{Gamma}(n, \lambda)$ and so $E\left[\tau_{n}\right]=n / \lambda$ and $\operatorname{Var}\left(\tau_{n}\right)=n / \lambda^{2}$. Observe that $\left(X^{\tau_{n}}\right)^{2}$ is submartingale. So

$$
\begin{aligned}
\sup _{t \geq 0} E\left[\left(X_{t}^{\tau_{n}}\right)^{2}\right] & \leq E\left[\left(X_{\infty}^{\tau_{n}}\right)^{2}\right] \\
& =E\left[X_{\tau_{n}}^{2}\right] \\
& =E\left[\left(\sum_{k=1}^{n} Y_{k}-\mu \lambda \tau_{n}\right)^{2}\right] \\
& =\operatorname{Var}\left(\sum_{k=1}^{n} Y_{k}-\mu \lambda \tau_{n}\right)+E\left[\sum_{k=1}^{n} Y_{k}-\mu \lambda \tau_{n}\right]^{2} \\
& =n \sigma^{2}+\frac{n \mu^{2} \lambda^{2}}{\lambda^{2}}+(n \mu-n \mu)^{2}=n\left(\sigma^{2}+\mu^{2}\right)
\end{aligned}
$$

To compute $E\left[\sum_{s>0}\left(\triangle X_{s}^{\tau_{n}}\right)^{2}\right]$, we observe that $\triangle X_{\tau_{k}}, 1 \leq k \leq n$ are i.i.d. and $\triangle X_{\tau_{k}} \stackrel{d}{=} Y_{k}$. So,

$$
E\left[\sum_{s>0}\left(\triangle X_{s}^{\tau_{n}}\right)^{2}\right]=E\left[\sum_{k=1}^{n}\left(\triangle X_{\tau_{k}}\right)^{2}\right]=E\left[\sum_{k=1}^{n} Y_{k}^{2}\right]=n\left(\mu^{2}+\sigma^{2}\right)=E\left[\left(X_{\infty}^{\tau_{n}}\right)^{2}\right]
$$

Therefore, we have $X^{\tau_{n}} \in \mathcal{H}_{0}^{2, d}$ and $X \in \mathcal{H}_{\text {loc }}^{2, d}$. The last claim follows from the proof of (d).

