Mathematical Finance Solution sheet 4

Solution 4.1

(a) First, $E\left[1 \wedge\left|Z^{1}-Z^{2}\right|\right] \geq 0$ for all $Z^{1}, Z^{2} \in L^{0}$ and $E\left[1 \wedge\left|Z^{1}-Z^{2}\right|\right]=0$ if and only if $Z^{1}=Z^{2} P$-a.s. Also $E\left[1 \wedge\left|Z^{1}-Z^{2}\right|\right]=E\left[1 \wedge\left|Z^{2}-Z^{1}\right|\right]$ gives the symmetry. Finally, for $Z^{1}, Z^{2}, Z^{3} \in L^{0}$, we have $1 \wedge\left|Z^{1}-Z^{3}\right| \leq 1 \wedge\left(\left|Z^{1}-Z^{2}\right|+\left|Z^{2}-Z^{3}\right|\right) \leq$ $1 \wedge\left|Z^{1}-Z^{2}\right|+1 \wedge\left|Z^{2}-Z^{3}\right|$. Taking expectation gives the triangle inequality. The estimate $P[|Z|>\delta] \leq \delta^{-1} E[1 \wedge|Z|]$ for $\delta \leq 1$ gives that convergence in d_{0} implies convergence in probability. If $Z^{n} \rightarrow Z$ in probability, then $E\left[1 \wedge\left|Z^{n}-Z\right|\right] \rightarrow 0$ by the bounded convergence theorem.
(b) We only show that (\mathbb{L}, d) is a complete metric space. The proof for (\mathbb{D}, d) is analogous. The fact that d is a metric can be proved similarly as above. Now let $\left(X^{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{L}$ be a Cauchy sequence in d. Set $n_{1}=1$. After n_{k-1} is defined, we choose n_{k} such that $P\left[\left(X^{n}-X^{m}\right)_{T}^{*}>2^{-k}\right]<2^{-k}$ for all $m, n \geq n_{k}$. In particular, this gives

$$
\sum_{k=1}^{\infty} P\left[\left(X^{n_{k+1}}-X^{n_{k}}\right)_{T}^{*}>2^{-k}\right]<\infty
$$

and by the Borel-Cantelli lemma it follows that $\left(X^{n_{k}}\right)_{k \in \mathbb{N}}$ is P-a.s. a Cauchy sequence under the uniform convergence on $[0, T]$. So for each $t \in[0, T]$ there is a limit $X_{t}=\lim _{k \rightarrow \infty} X_{t}^{n_{k}}$. Since each $X^{n_{k}}$ is adapted and \mathbb{F} is complete, X is also adapted. Using $\sup _{s \in[0, T)}\left|X_{s+}^{n_{k}}-X_{s+}^{n_{l}}\right| \leq \sup _{s \in[0, T]}\left|X_{s}^{n_{k}}-X_{s}^{n_{l}}\right|$, we have $\left(X_{+}^{n_{k}}\right)_{k \in \mathbb{N}}$ is also Cauchy under uniform convergence on $[0, T]$ and has a limit X_{+}. Using the uniform convergence on $[0, T]$, we can switch the following limits and obtain

$$
\begin{aligned}
& \lim _{s \uparrow t} X_{s}=\lim _{s \uparrow t} \lim _{k \rightarrow \infty} X_{s}^{n_{k}}=\lim _{k \rightarrow \infty} \lim _{s \uparrow t} X_{s}^{n_{k}}=X_{t}, \\
& \lim _{s \downarrow t} X_{s}=\lim _{s \downarrow t} \lim _{k \rightarrow \infty} X_{s}^{n_{k}}=\lim _{k \rightarrow \infty} \lim _{s \downarrow t} X_{s}^{n_{k}}=X_{t+} .
\end{aligned}
$$

Therefore $X \in \mathbb{L}$. Finally, we need to show that $\left(X^{n}\right)_{n \in \mathbb{N}}$ converges to X in d. Let $\varepsilon>0$. Find k such that $d\left(X^{n_{k}}, X\right)<\varepsilon / 2$ and $1 / 2^{k}<\varepsilon / 2$. Then for all $n \geq n_{k}$, we have $d\left(X^{n}, X\right) \leq d\left(X^{n}, X^{n_{k}}\right)+d\left(X^{n_{k}}, X\right)<\varepsilon$. This shows $d\left(X^{n}, X\right) \rightarrow 0$ as $n \rightarrow \infty$.
(c) Let $X \in \mathbb{L}$. By localization, we may assume that X is bounded. Let $\varepsilon>0$. Set $Y=X_{+}$and consider $\tau_{0}^{\varepsilon}:=0$ and $\tau_{n+1}^{\varepsilon}:=\inf \left\{t>\tau_{n}^{\varepsilon}:\left|Y_{t}-Y_{\tau_{n}^{\varepsilon}}\right|>\varepsilon\right\} \wedge T$.

The right-continuity of Y implies that the τ_{n}^{ε} are stopping times and $\tau_{n}^{\varepsilon} \uparrow T$ stationarily. So define $X^{\varepsilon}=X_{0} \mathbb{1}_{\{0\}}+\sum_{n} Y_{\tau_{n}^{\varepsilon}} \mathbb{1}_{\mathbb{1} \tau_{n}^{\varepsilon}, \tau_{n+1}^{\varepsilon} \mathbb{1}} \in b \mathcal{E}_{0}$ and by construction $P\left[\left(X^{\varepsilon}-X\right)_{T}^{*}>\varepsilon\right] \leq P\left[\tau_{m} \neq T\right]+P\left[\left(X^{\varepsilon}-X^{\tau_{m}}\right)_{T}^{*}>\varepsilon\right]$. Observe $Y_{-}=X$ and the result follows.

Solution 4.2

(a)" \Longrightarrow " Let $\varepsilon>0$. By definition there exists $K>0$ with $\sup _{n} P\left[\left|c_{n}\right|>K\right] \leq \varepsilon$. Then

$$
P\left[\left|\lambda_{n} c_{n}\right|>\varepsilon\right] \leq \sup _{n} P\left[\left|c_{n}\right|>K\right]+P\left[\left\{\left|\lambda_{n} c_{n}\right|>\varepsilon\right\} \cap\left\{\left|c_{n}\right| \leq K\right\}\right]
$$

The second term goes to 0 because $\lambda_{n} \downarrow 0$. Therefore, we have $\lambda_{n} c_{n} \rightarrow 0$ in L^{0}. " \Longleftarrow " If C is not bounded in L^{0}, then there exist δ and a sequence $\left(c_{n}\right)$ such that $P\left[\left|c_{n}\right|>n\right]>\delta$ for all $n \in \mathbb{N}$. It follows that $P\left[\left|c_{n} / n\right|>1\right]>\delta$ for all $n \in \mathbb{N}$, so $\left|c_{n} / n\right| \nrightarrow 0$ in L^{0}. This is a contradiction.
(b) " \Longrightarrow " If the set is not bounded in L^{0}, then there exist $\delta>0$ and a sequence $\left(H^{n}\right) \subseteq b \mathcal{E}$ with $\left\|H^{n}\right\|_{\infty} \leq 1$ such that $P\left[\left|H^{n} \bullet X\right|>n\right]>\delta$ for all $n \in \mathbb{N}$. Then $\tilde{H}^{n}:=H^{n} / n \rightarrow 0$ uniformly in (ω, t) but $P\left[\left|\tilde{H}^{n} \bullet X\right|>1\right]=P\left[\left|H^{n} \bullet X\right|>n\right]>\delta$ for all $n \in \mathbb{N}$. This is a contradiction.
$" \Longleftarrow "$ Let $\left(H^{n}\right) \subseteq b \mathcal{E}$ with $\left\|H^{n}\right\|_{\infty} \rightarrow 0$. WLOG, we assume that $\left\|H^{n}\right\|_{\infty}>0$ for all n. Set $\tilde{H}^{n}=H^{n} /\left\|H^{n}\right\|_{\infty}$. Then $\left\{\tilde{H}^{n} \bullet X_{T}: n \in \mathbb{N}\right\}_{\tilde{H}}$ is bounded in L^{0} and therefore by part (a) with $\lambda_{n}=\left\|H^{n}\right\|_{\infty}, H^{n} \bullet X_{T}=\lambda_{n} \tilde{H}^{n} \bullet X_{T} \rightarrow 0$ in L^{0}. This shows that X is a good integrator.

Solution 4.3

(a) We only need to prove that if each X^{n} is a local submartingale, then X is locally a submartingale. By passing to a subsequence, we may assume that $X^{n} \rightarrow X$ uniformly on $[0, T] P$-a.s. By Exercise 4.1, we have $X \in \mathbb{D}$. Moreover, $M_{t}:=\sup _{n}\left(X^{n}\right)_{t}^{*}$ is RCLL, adapted and increasing. Observe that $|\triangle M| \leq \sup _{n}\left|\triangle X^{n}\right|$, which is locally integrable by assumption. So M is locally integrable. Let $\left(\tau_{k}\right)_{k \in \mathbb{N}}$ be a localizing sequence so that $\mathbb{1}_{\left\{\tau_{k}>0\right\}} M^{\tau_{k}}$ is integrable. For each $n \in \mathbb{N}$, the process $\mathbb{1}_{\left\{\tau_{k}>0\right\}}\left(X^{n}\right)^{\tau_{k}}$ is locally a submartingale. Moreover $\mathbb{1}_{\left\{\tau_{k}>0\right\}}\left|X^{n}\right|^{\tau_{k}} \leq \mathbb{1}_{\left\{\tau_{k}>0\right\}} M^{\tau_{k}}$, so $\mathbb{1}_{\left\{\tau_{k}>0\right\}}\left|X^{n}\right|^{\tau_{k}}$ is of class DL. So by Exercise 3.2 (c), for every $n \in \mathbb{N}$, the process $\mathbb{1}_{\left\{\tau_{k}>0\right\}}\left(X^{n}\right)^{\tau_{k}}$ is a submartingale. Now applying the dominated convergence, we can send $n \rightarrow \infty$ and get that $\mathbb{1}_{\left\{\tau_{k}>0\right\}} X^{\tau_{k}}$ is a submartingale.
(b) By localization, we may assume that $H \in b \mathcal{P}$ and $M \in \mathcal{H}_{0}^{1}$. Suppose $\|H\|_{\infty} \leq K$ for some constant $K>0$. Choose a sequence $\left(H^{n}\right)_{n \in \mathbb{N}} \subseteq b \mathcal{E}$ with $d_{E}\left(H^{n} \bullet M, H \bullet M\right) \rightarrow 0$. In particular, $d\left(H^{n} \bullet M, H \bullet M\right) \rightarrow 0$. Note that each $Y^{n}:=H^{n} \bullet M$ is a martingale and moreover $\left|\triangle Y^{n}\right|=\left|H^{n} \triangle X\right| \leq K|\triangle X|$.

Therefore $\sup _{n}\left|\triangle Y^{n}\right| \leq K|\triangle X|$. Because $X \in \mathcal{H}_{0}^{1}$, we have that $|\triangle X|$ is integrable and so is $\sup _{n}\left|\triangle Y^{n}\right|$. Now applying part (a), we conclude that $Y=H \bullet M$ is a martingale.

Solution 4.4

(a) We set $P:=X+Y$ and $D:=X-Y$. Then

$$
\begin{aligned}
X Y & =\frac{1}{4}\left(P^{2}-D^{2}\right) \\
& =\frac{1}{4}\left(P_{0}^{2}+2 \int P_{-} \mathrm{d} P+[P]-D_{0}^{2}-2 \int D_{-} \mathrm{d} D-[D]\right) \\
& =\frac{1}{4}\left(4 X_{0} Y_{0}+4 \int X_{-} \mathrm{d} Y+4 \int Y_{-} \mathrm{d} X+[P]-[D]\right) \\
& =X_{0} Y_{0}+\int X_{-} \mathrm{d} Y+\int Y_{-} \mathrm{d} X+[X, Y]
\end{aligned}
$$

(b) Using the integration by parts formula, we have

$$
\triangle[X, Y]=\triangle(X Y)-X_{-} \triangle Y-Y_{-} \triangle X=\triangle X \triangle Y
$$

(c) Recall that $t \mapsto[X]_{t}$ is a.s. increasing, so we must have

$$
\sum_{s \leq t}\left(\triangle X_{s}\right)^{2}=\sum_{s \leq t} \triangle[X]_{s} \leq[X]_{t}<\infty
$$

(d) We express the covariation as the limit along equally spaced partitions of $[0, T]$. This gives

$$
\begin{aligned}
{[X, V]_{T} } & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(X_{k T / n}-X_{(k-1) T / n}\right)\left(V_{k T / n}-V_{(k-1) T / n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \int \mathbb{1}_{\{(k-1) T / n<s \leq k T / n\}}\left(X_{k T / n}-X_{(k-1) T / n}\right) \mathrm{d} V_{s} \\
& =\int \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mathbb{1}_{\{(k-1) T / n<s \leq k T / n\}}\left(X_{k T / n}-X_{(k-1) T / n}\right) \mathrm{d} V_{s} \\
& =\int_{0}^{T} \triangle X_{s} \mathrm{~d} V_{s}
\end{aligned}
$$

We used the bounded convergence theorem in the third line. Now, since X is RCLL, on each sample path there is only a countable set S of times at which $\triangle X \neq 0$. So we can use the bounded convergence theorem again to obtain

$$
\begin{aligned}
\int_{0}^{T} \triangle X_{s} \mathrm{~d} V_{s} & =\int_{0}^{T} \sum_{s \in S} \triangle X_{s} \mathbb{1}_{\{s=r\}} \mathrm{d} V_{r} \\
& =\sum_{s \in S} \int_{0}^{T} \triangle X_{s} \mathbb{1}_{\{s=r\}} \mathrm{d} V_{r} \\
& =\sum_{s \in S, s \leq T} \triangle X_{s} \triangle V_{s}=\sum_{s \leq T} \triangle X_{s} \triangle V_{s}
\end{aligned}
$$

Solution 4.5

(a) Let $\left(K^{n}\right)_{n \in \mathbb{N}} \subset b \mathcal{E}$ with $\left\|K^{n}\right\|_{\infty} \leq 1$ for all $n \in \mathbb{N}$. Because $K^{n} \bullet\left(H^{n} \bullet A\right)=$ $\left(K^{n} H^{n}\right) \bullet A$ and $K^{n} H^{n} \rightarrow 0$ with $\left\|K^{n} H^{n}\right\|_{\infty} \leq\left\|H^{n}\right\|_{\infty}$, applying the dominated convergence theorem yields $\left(K^{n} H^{n}\right) \bullet A_{T} \rightarrow 0 P$-a.s. and hence in L^{0}. In view of Lemma 3.2, we conclude that $d_{E}^{\prime}\left(H^{n} \bullet A, 0\right) \rightarrow 0$.
(b) Choose a localizing sequnce $\left(\tau_{m}\right)_{m \in \mathbb{N}}$ such that $M^{\tau_{m}} \in \mathcal{H}_{0}^{1}$ and $P\left[\tau_{m}=T\right] \uparrow 1$. The dominating convergence property in Theorem 3.12 gives that for every $m \in \mathbb{N},\left(H^{n} \bullet M^{\tau_{m}}\right)_{n \in \mathbb{N}}$ is Cauchy in $\left(\mathcal{S}, d_{E}^{\prime}\right)$. Set $Y=H^{i}-H^{j}$. Using that $H^{n} \bullet M^{\tau_{m}}=\left(H^{n} \bullet M\right)^{\tau_{m}}$ and choosing ε such that $P\left[\tau_{m} \neq T\right]<\varepsilon$ for large m, we have for all $\left(K^{n}\right) \subseteq b \mathcal{E}$ with $\left\|K^{n}\right\|_{\infty} \leq 1$ that

$$
P\left[\left(K^{n} Y\right) \bullet M_{T}>\varepsilon\right] \leq P\left[\tau_{m} \neq T\right]+P\left[\left(K^{n} Y\right) \bullet M_{\tau_{m}}>\varepsilon\right]
$$

In view of Lemma 3.2, we conclude that $\left(H^{n} \bullet M\right)_{n \in \mathbb{N}}$ is Cauchy in $\left(\mathcal{S}, d_{E}^{\prime}\right)$.
(c) Assume that $S=S_{0}+M+A$ where $M \in \mathcal{M}_{0, \text { loc }}$ and A is of FV. We first construct $H \bullet M$. Choose a localizing sequence $\left(\tau_{m}\right)_{m \in \mathbb{N}}$ such that $P\left[\tau_{m}=T\right] \uparrow 1$ and $H^{m}:=H \mathbb{1}_{\llbracket 0, \tau_{m} \rrbracket} \in b \mathcal{P}$. Part (b) gives that $H^{m} \bullet M$ exists. So we can define $H \bullet M:=H^{m} \bullet M$ on $\llbracket 0, \tau_{m} \rrbracket$. To see this definition is consistent, suppose that $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ is another localizing sequence. It follows that $H \bullet M=H \mathbb{1}_{\llbracket 0, \tau_{m} \wedge \sigma_{n} \rrbracket} \bullet M$ on $\llbracket 0, \tau_{n} \wedge \sigma_{m} \rrbracket$. So for large enough n, it is clear that $H \bullet M=H \mathbb{1}_{\llbracket 0, \tau_{m} \wedge \sigma_{n} \rrbracket} \bullet M=$ $H^{m} \bullet M$ on $\llbracket 0, \tau_{m} \rrbracket$. This implies that the definition is independent of the choice of localizing sequences. Using part (a), we can analogously construct $H \bullet A$ and hence $H \bullet S:=H \bullet M+H \bullet A$.

