Mathematical Finance

Solution sheet 4

Solution 4.1

- (a) First, $E[1 \wedge |Z^1 Z^2|] \ge 0$ for all $Z^1, Z^2 \in L^0$ and $E[1 \wedge |Z^1 Z^2|] = 0$ if and only if $Z^1 = Z^2$ *P*-a.s. Also $E[1 \wedge |Z^1 - Z^2|] = E[1 \wedge |Z^2 - Z^1|]$ gives the symmetry. Finally, for $Z^1, Z^2, Z^3 \in L^0$, we have $1 \wedge |Z^1 - Z^3| \le 1 \wedge (|Z^1 - Z^2| + |Z^2 - Z^3|) \le 1 \wedge |Z^1 - Z^2| + 1 \wedge |Z^2 - Z^3|$. Taking expectation gives the triangle inequality. The estimate $P[|Z| > \delta] \le \delta^{-1}E[1 \wedge |Z|]$ for $\delta \le 1$ gives that convergence in d_0 implies convergence in probability. If $Z^n \to Z$ in probability, then $E[1 \wedge |Z^n - Z|] \to 0$ by the bounded convergence theorem.
- (b) We only show that (\mathbb{L}, d) is a complete metric space. The proof for (\mathbb{D}, d) is analogous. The fact that d is a metric can be proved similarly as above. Now let $(X^n)_{n \in \mathbb{N}} \subseteq \mathbb{L}$ be a Cauchy sequence in d. Set $n_1 = 1$. After n_{k-1} is defined, we choose n_k such that $P[(X^n - X^m)_T^* > 2^{-k}] < 2^{-k}$ for all $m, n \ge n_k$. In particular, this gives

$$\sum_{k=1}^{\infty} P[(X^{n_{k+1}} - X^{n_k})_T^* > 2^{-k}] < \infty$$

and by the Borel-Cantelli lemma it follows that $(X^{n_k})_{k\in\mathbb{N}}$ is *P*-a.s. a Cauchy sequence under the uniform convergence on [0, T]. So for each $t \in [0, T]$ there is a limit $X_t = \lim_{k\to\infty} X_t^{n_k}$. Since each X^{n_k} is adapted and \mathbb{F} is complete, X is also adapted. Using $\sup_{s\in[0,T]} |X_{s+}^{n_k} - X_{s+}^{n_l}| \leq \sup_{s\in[0,T]} |X_s^{n_k} - X_s^{n_l}|$, we have $(X_{+}^{n_k})_{k\in\mathbb{N}}$ is also Cauchy under uniform convergence on [0,T] and has a limit X_+ . Using the uniform convergence on [0,T], we can switch the following limits and obtain

$$\lim_{s\uparrow t} X_s = \lim_{s\uparrow t} \lim_{k\to\infty} X_s^{n_k} = \lim_{k\to\infty} \lim_{s\uparrow t} X_s^{n_k} = X_t,$$
$$\lim_{s\downarrow t} X_s = \lim_{s\downarrow t} \lim_{k\to\infty} X_s^{n_k} = \lim_{k\to\infty} \lim_{s\downarrow t} X_s^{n_k} = X_{t+}.$$

Therefore $X \in \mathbb{L}$. Finally, we need to show that $(X^n)_{n \in \mathbb{N}}$ converges to X in d. Let $\varepsilon > 0$. Find k such that $d(X^{n_k}, X) < \varepsilon/2$ and $1/2^k < \varepsilon/2$. Then for all $n \ge n_k$, we have $d(X^n, X) \le d(X^n, X^{n_k}) + d(X^{n_k}, X) < \varepsilon$. This shows $d(X^n, X) \to 0$ as $n \to \infty$.

(c) Let $X \in \mathbb{L}$. By localization, we may assume that X is bounded. Let $\varepsilon > 0$. Set $Y = X_+$ and consider $\tau_0^{\varepsilon} := 0$ and $\tau_{n+1}^{\varepsilon} := \inf\{t > \tau_n^{\varepsilon} : |Y_t - Y_{\tau_n^{\varepsilon}}| > \varepsilon\} \land T$.

Updated: November 2, 2018

The right-continuity of Y implies that the τ_n^{ε} are stopping times and $\tau_n^{\varepsilon} \uparrow T$ stationarily. So define $X^{\varepsilon} = X_0 \mathbb{1}_{\{0\}} + \sum_n Y_{\tau_n^{\varepsilon}} \mathbb{1}_{[]\tau_n^{\varepsilon}, \tau_{n+1}^{\varepsilon}]} \in b\mathcal{E}_0$ and by construction $P[(X^{\varepsilon} - X)_T^* > \varepsilon] \leq P[\tau_m \neq T] + P[(X^{\varepsilon} - X^{\tau_m})_T^* > \varepsilon]$. Observe $Y_- = X$ and the result follows.

Solution 4.2

(a) " \Longrightarrow " Let $\varepsilon > 0$. By definition there exists K > 0 with $\sup_n P[|c_n| > K] \le \varepsilon$. Then

$$P[|\lambda_n c_n| > \varepsilon] \le \sup_n P[|c_n| > K] + P[\{|\lambda_n c_n| > \varepsilon\} \cap \{|c_n| \le K\}].$$

The second term goes to 0 because $\lambda_n \downarrow 0$. Therefore, we have $\lambda_n c_n \to 0$ in L^0 . " \Leftarrow " If C is not bounded in L^0 , then there exist δ and a sequence (c_n) such that $P[|c_n| > n] > \delta$ for all $n \in \mathbb{N}$. It follows that $P[|c_n/n| > 1] > \delta$ for all $n \in \mathbb{N}$, so $|c_n/n| \not\to 0$ in L^0 . This is a contradiction.

(b) " \Longrightarrow " If the set is not bounded in L^0 , then there exist $\delta > 0$ and a sequence $(H^n) \subseteq b\mathcal{E}$ with $||H^n||_{\infty} \leq 1$ such that $P[|H^n \bullet X| > n] > \delta$ for all $n \in \mathbb{N}$. Then $\tilde{H}^n := H^n/n \to 0$ uniformly in (ω, t) but $P[|\tilde{H}^n \bullet X| > 1] = P[|H^n \bullet X| > n] > \delta$ for all $n \in \mathbb{N}$. This is a contradiction.

" \Leftarrow " Let $(H^n) \subseteq b\mathcal{E}$ with $||H^n||_{\infty} \to 0$. WLOG, we assume that $||H^n||_{\infty} > 0$ for all n. Set $\tilde{H}^n = H^n/||H^n||_{\infty}$. Then $\{\tilde{H}^n \bullet X_T : n \in \mathbb{N}\}$ is bounded in L^0 and therefore by part (a) with $\lambda_n = ||H^n||_{\infty}$, $H^n \bullet X_T = \lambda_n \tilde{H}^n \bullet X_T \to 0$ in L^0 . This shows that X is a good integrator.

Solution 4.3

- (a) We only need to prove that if each X^n is a local submartingale, then X is locally a submartingale. By passing to a subsequence, we may assume that $X^n \to X$ uniformly on [0,T] *P*-a.s. By Exercise 4.1, we have $X \in \mathbb{D}$. Moreover, $M_t := \sup_n (X^n)_t^*$ is RCLL, adapted and increasing. Observe that $|\Delta M| \leq \sup_n |\Delta X^n|$, which is locally integrable by assumption. So M is locally integrable. Let $(\tau_k)_{k\in\mathbb{N}}$ be a localizing sequence so that $\mathbb{1}_{\{\tau_k>0\}}M^{\tau_k}$ is integrable. For each $n \in \mathbb{N}$, the process $\mathbb{1}_{\{\tau_k>0\}}(X^n)^{\tau_k}$ is locally a submartingale. Moreover $\mathbb{1}_{\{\tau_k>0\}}|X^n|^{\tau_k} \leq \mathbb{1}_{\{\tau_k>0\}}M^{\tau_k}$, so $\mathbb{1}_{\{\tau_k>0\}}(X^n)^{\tau_k}$ is of class DL. So by Exercise 3.2 (c), for every $n \in \mathbb{N}$, the process $\mathbb{1}_{\{\tau_k>0\}}(X^n)^{\tau_k}$ is a submartingale. Now applying the dominated convergence, we can send $n \to \infty$ and get that $\mathbb{1}_{\{\tau_k>0\}}X^{\tau_k}$ is a submartingale.
- (b) By localization, we may assume that $H \in b\mathcal{P}$ and $M \in \mathcal{H}_0^1$. Suppose $\|H\|_{\infty} \leq K$ for some constant K > 0. Choose a sequence $(H^n)_{n \in \mathbb{N}} \subseteq b\mathcal{E}$ with $d_E(H^n \bullet M, H \bullet M) \to 0$. In particular, $d(H^n \bullet M, H \bullet M) \to 0$. Note that each $Y^n := H^n \bullet M$ is a martingale and moreover $|\Delta Y^n| = |H^n \Delta X| \leq K |\Delta X|$.

Updated: November 2, 2018

Therefore $\sup_n |\Delta Y^n| \leq K |\Delta X|$. Because $X \in \mathcal{H}_0^1$, we have that $|\Delta X|$ is integrable and so is $\sup_n |\Delta Y^n|$. Now applying part (a), we conclude that $Y = H \bullet M$ is a martingale.

Solution 4.4

(a) We set P := X + Y and D := X - Y. Then

$$XY = \frac{1}{4}(P^2 - D^2)$$

= $\frac{1}{4}(P_0^2 + 2\int P_- dP_+ [P] - D_0^2 - 2\int D_- dD_- [D])$
= $\frac{1}{4}(4X_0Y_0 + 4\int X_- dY_+ 4\int Y_- dX_+ [P] - [D])$
= $X_0Y_0 + \int X_- dY_+ \int Y_- dX_+ [X, Y].$

(b) Using the integration by parts formula, we have

$$\triangle[X,Y] = \triangle(XY) - X_{-} \triangle Y - Y_{-} \triangle X = \triangle X \triangle Y.$$

(c) Recall that $t \mapsto [X]_t$ is a.s. increasing, so we must have

$$\sum_{s \le t} (\triangle X_s)^2 = \sum_{s \le t} \triangle [X]_s \le [X]_t < \infty.$$

(d) We express the covariation as the limit along equally spaced partitions of [0, T]. This gives

$$[X,V]_T = \lim_{n \to \infty} \sum_{k=1}^n (X_{kT/n} - X_{(k-1)T/n}) (V_{kT/n} - V_{(k-1)T/n})$$

$$= \lim_{n \to \infty} \sum_{k=1}^n \int \mathbb{1}_{\{(k-1)T/n < s \le kT/n\}} (X_{kT/n} - X_{(k-1)T/n}) \, \mathrm{d}V_s$$

$$= \int \lim_{n \to \infty} \sum_{k=1}^n \mathbb{1}_{\{(k-1)T/n < s \le kT/n\}} (X_{kT/n} - X_{(k-1)T/n}) \, \mathrm{d}V_s$$

$$= \int_0^T \triangle X_s \, \mathrm{d}V_s.$$

We used the bounded convergence theorem in the third line. Now, since X is RCLL, on each sample path there is only a countable set S of times at which $\Delta X \neq 0$. So we can use the bounded convergence theorem again to obtain

$$\int_0^T \triangle X_s \, \mathrm{d}V_s = \int_0^T \sum_{s \in S} \triangle X_s \mathbb{1}_{\{s=r\}} \, \mathrm{d}V_r$$
$$= \sum_{s \in S} \int_0^T \triangle X_s \mathbb{1}_{\{s=r\}} \, \mathrm{d}V_r$$
$$= \sum_{s \in S, s \leq T} \triangle X_s \triangle V_s = \sum_{s \leq T} \triangle X_s \triangle V_s.$$

Updated: November 2, 2018

3 / 4

Solution 4.5

- (a) Let $(K^n)_{n\in\mathbb{N}} \subset b\mathcal{E}$ with $||K^n||_{\infty} \leq 1$ for all $n \in \mathbb{N}$. Because $K^n \bullet (H^n \bullet A) = (K^n H^n) \bullet A$ and $K^n H^n \to 0$ with $||K^n H^n||_{\infty} \leq ||H^n||_{\infty}$, applying the dominated convergence theorem yields $(K^n H^n) \bullet A_T \to 0$ *P*-a.s. and hence in L^0 . In view of Lemma 3.2, we conclude that $d'_E(H^n \bullet A, 0) \to 0$.
- (b) Choose a localizing sequnce $(\tau_m)_{m\in\mathbb{N}}$ such that $M^{\tau_m} \in \mathcal{H}_0^1$ and $P[\tau_m = T] \uparrow 1$. The dominating convergence property in Theorem 3.12 gives that for every $m \in \mathbb{N}, (H^n \bullet M^{\tau_m})_{n\in\mathbb{N}}$ is Cauchy in (\mathcal{S}, d'_E) . Set $Y = H^i - H^j$. Using that $H^n \bullet M^{\tau_m} = (H^n \bullet M)^{\tau_m}$ and choosing ε such that $P[\tau_m \neq T] < \varepsilon$ for large m, we have for all $(K^n) \subseteq b\mathcal{E}$ with $\|K^n\|_{\infty} \leq 1$ that

$$P[(K^nY) \bullet M_T > \varepsilon] \le P[\tau_m \neq T] + P[(K^nY) \bullet M_{\tau_m} > \varepsilon].$$

In view of Lemma 3.2, we conclude that $(H^n \bullet M)_{n \in \mathbb{N}}$ is Cauchy in (\mathcal{S}, d'_E) .

(c) Assume that $S = S_0 + M + A$ where $M \in \mathcal{M}_{0,\text{loc}}$ and A is of FV. We first construct $H \bullet M$. Choose a localizing sequence $(\tau_m)_{m \in \mathbb{N}}$ such that $P[\tau_m = T] \uparrow 1$ and $H^m := H\mathbb{1}_{[0,\tau_m]} \in b\mathcal{P}$. Part (b) gives that $H^m \bullet M$ exists. So we can define $H \bullet M := H^m \bullet M$ on $[0, \tau_m]$. To see this definition is consistent, suppose that $(\sigma_n)_{n \in \mathbb{N}}$ is another localizing sequence. It follows that $H \bullet M = H\mathbb{1}_{[0,\tau_m \land \sigma_n]} \bullet M$ on $[0, \tau_n \land \sigma_m]$. So for large enough n, it is clear that $H \bullet M = H\mathbb{1}_{[0,\tau_m \land \sigma_n]} \bullet M =$ $H^m \bullet M$ on $[0, \tau_m]$. This implies that the definition is independent of the choice of localizing sequences. Using part (a), we can analogously construct $H \bullet A$ and hence $H \bullet S := H \bullet M + H \bullet A$.