ETH Zurich, Fall 2018 Coordinator

Prof.

Martin Schweizer Zhouyi Tan

Mathematical Finance

Solution sheet 6

Solution 6.1

(a)

Take U = R, = (0,00) and f : x — 1/x. Because Y_ > 0, the processes
f'(Y2) = —=1/Y?% and f"(Y_) = 2/Y? are predictable and locally bounded.
Hence, f(Y_)eY and f”(Y_) e [Y] are semimartingales. Clearly, the sums of
the jump terms are also semimartingales. Thus, by Itd’s formula, 1/Y = f(Y)
is a semimartingale.

Suppose X,Y € X}, are numéraire portfolios. Both X/Y and Y/X are
supermartingales starting from 1 at time 0. Set R := X/Y. Then

E[Ri] < E[Ry] =1 for all t > 0. On the other hand, E[1/S;] < E[1/Ry] =1
for all t > 0. But by Jensen’s inequality E[1/R;] > 1/E[R;] > 1 and this gives
E[1/R;] =1 and E[R;] =1 for all t > 0. Note that z — 1/x is strictly convex
on (0,00), so this can happen if and only if S; =1, i.e. X; =Y, P-a.s. for all
t>0.

Solution 6.2

(a)

By definition of being a o-martingale, ZS = [ dM for a local martingale M
and an integrand ¢ € L(M) with ¢ > 0. Recall that Mg oc = H{ joc-

Now, let (p,) be a localizing sequence for M such that M*» € H} for each
n. As in the proof of the Ansel-Stricker theorem (Lemma 4.2 in the lecture
notes), for each k, we define ¢* := ¥ 1qy<ky and for each n and k define
Mm™F = [p* dMP~, which is in H].

By definition, M™% — [ dM?" as k — oo for dg and therefore for d for
each fixed n, as well as (AM™*)* < (A [ dMP»)*. Assume for the moment
that [ dM has locally a lower bound in L', which means that there exist a
localizing sequence (7,,,) of stopping times and a sequence of random variables
(7m) € L' such that ([ dM)™ > ~,, for each m. In particular, we have
([ dMP)Tm > ~,, for each n,m. Thus, all the assumptions of Lemma 4.2
are satisfied for each n, which implies that [¢ dM? = ([ dM)" € Mgjoc
for each n. This implies that [ dM € Mgjoc. So we have proved the claim.
Therefore, it remains to show that ZS = [ dM has locally a lower bound in
L.

Let (T,) be a localizing sequence for the local martingale Z such that each
ZTn is an H'-martingale and define for each n € N the stopping times
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oni={t>0: |5 >n}and T, := {t >0 : |Z] >n}. Consider the sequence
of stopping times (7,,) defined by 7, := T,, AT, A 0,,. By construction, (7,)
converges to oo a.s. Moreover, as S is continuous and

sup |[Z["| < n+|AZ,, | € L',
0

we obtain for each n that (ZS)™ > —n(n+|AZ, |) € L'.

(b) First let us prove the following result:

Let Y = (Y;)tcpo,n) be an adapted RCLL R%valued process and Q ~ P an

equivalent measure with density process Z; := %| 7. Then Y is a Q-o-
martingale if and only if ZY is a P-o-martingale.

For simplicity, let d = 1 and Yy = 0. Suppose that Y is a ()-o-martingale such
that Y = ¢ « M for some @Q-local martingale M and some ¢ € L(M) with
¢ > 0. Using the product rule we have

d(ZY)=Y_ dZ + Z_dY +d[Z,Y].
By the associativity of stochastic integrals, inserting Y = ¢ e M, we obtain that
Z_dY = ¢Z_dM = ¢d(Z_ e M). (1)
Moreover, we also have
d[Z,) Y] =d|Z, (¢ e M)| = ¢d[Z, M]. (2)

Now we apply the product rule for ZM and obtain that
d(ZM) = ZyMy + Z_dM + M_dZ + d[M, Z], which implies that

Z_ oM =ZM— ZoMy— M_e Z — M, 7). (3)

From (1) and (2) we know that ¢ € L(Z_ e M) and ¢ € L([M, Z]), therefore
(3) implies that ¢ € L(ZM — ZyMy — M_ e Z) and consequently we have

AZY) =Y. dZ + Z_dY +d[Z,Y] = Y_dZ + ¢d(ZM — ZyMy — M_ e Z)
= Y_dZ + ¢d(ZM — ZyMy — M_ ® Z).

Clearly the density process Z is a P-martingale. Moreover, by Bayes’ theorem,
with M being a @)-local martingale the process ZM is a P-local martingale.
Also, by the hint, the stochastic integral M_ e Z is a P-local martingale. Hence
ZM — ZyMy— M_ e Z is a P-local martingale and ¢ e (ZM — ZyMy— M_e Z)
is a P-o-martingale. Since Y_ o Z is a P-local martingale, as the sum of
two P-o-martingales, ZY = Y_ o Z + ¢d(ZM — ZyMy — M_ e Z) is also a
P-o-martingale. By symmetry (we replace Y by ZY and replace Z by % and
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note that - as the density process of | 7 Is a Q-martingale), we can use the
same argument to show the converse.

Now assume that S has a P-EocMD, say, D, so that D > 0 is a P-local
martingale and DS is a P-o-martingale; and () ~ P on JFp with density
process Z. Define Y := %DS. Obviously ZY = Z,DS is a P-o-martingale
by assumption. Hence, using the above result, we can deduce that Y is a
Q-o-martingale. By definition we can conclude that %D is a Q-EoMD for S.

First write X = 1+ G(9) for some G(9) > —1 We could compute.

ZG(W) =G_(V) e Z+ (Z_0)e S+ [Z,G(V)]
G_(0)eZ+ (VZ_)eS+1De[Z 5]
G_(0)eZ+Ve(Z_ oS+ [Z,S|+S5S_eZ—-S5S_e2Z)

=ZSs

—G_(0)sZ+0e(ZS)— (S_V)eZ

like ZS is a stochastic integral of some P-local martingale and so is ZX =
Z + ZG(9). Moreover, ZX > 0 and by Ansel-Stricker is a P-supermartingale.

Solution 6.3

(a)

(b)

d(B,W), = pdt because d (W, W'), =0, and
(5,Y), = </U(u, S,.Y, qu,/a(u,Yu)dBu>
¢

t
_/ o (u, S, Ya)a(u, Yy )d (W, B}u:/ o (u, S, Ya)a(u, V) pdu.
0

Let Z% be the density process of Q ~ P. Note that F is trivial and Z% is
continuous since the filtration is generated by (W, W’). Defining L° by

1
Q _ Q
9 — / Al
we have Z@ = £(L?). By the Kunita-Watanabe decomposition, L% is given by

L = /nyUdW—i-NQ

with N9 € Mg 0c(P) and <NQ, fadW> = 0. By Bayes’ rule, Q is an ELMM
for S iff Z9S € My,(P). By the product rule, we obtain

d(Z28,) = Z20,dW, + S,dZ2 + 72 (utdt +d <LQ, / adW> )
t

= 220 dW, + SidZ2 + Z7 (medt + P otdt)
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yielding Z25 € Moo(P) if and only if 42 = — L. Therefore the equivalent

t
local martingale measures () are parametrized via

Zng(—/“dW+NQ>_
g

Since the filtration is generated by (W, W’), we can apply the martingale
representation theorem to write N as

NO :/¢dw+/udW',

where 1 and v are some predictable processes. As <N Q adW> = 0, it follows
that 0 = [, 0, dt and hence ¥ = 0 so that we finally obtain

79 —¢ (— [raw+ [ ydW’> , (4)
where A\ = /o and v is some predictable process.

By Girsanov, (W@, W), defined by W@ = W + [ A\dt and W@ = W' — [wvdt,
is a 2-dimensional )-Brownian motion. Plugging this into the SDEs for S and
Y gives

dS, = judt + o,(dWE — Ndt) = o, dW

and
dY, = bydt 4+ a,p(dWE — Ndt) + agy/1 — p2(dW/2 + v,dt)
= (bt +a;(\/1—p? vy — p)\t))dt + a;dB®

for the Q-Brownian motion B = pW® + /1 — p2 W/,
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