Mathematical Finance Solution sheet 6

Solution 6.1

(a) Take $U=\mathbb{R}_{++}=(0, \infty)$ and $f: x \mapsto 1 / x$. Because $Y_{-}>0$, the processes $f^{\prime}\left(Y_{-}\right)=-1 / Y_{-}^{2}$ and $f^{\prime \prime}\left(Y_{-}\right)=2 / Y_{-}^{3}$ are predictable and locally bounded. Hence, $f\left(Y_{-}\right) \bullet Y$ and $f^{\prime \prime}\left(Y_{-}\right) \bullet[Y]$ are semimartingales. Clearly, the sums of the jump terms are also semimartingales. Thus, by Itô's formula, $1 / Y=f(Y)$ is a semimartingale.
(b) Suppose $X, Y \in \mathcal{X}_{++}^{1}$ are numéraire portfolios. Both X / Y and Y / X are supermartingales starting from 1 at time 0 . Set $R:=X / Y$. Then $E\left[R_{t}\right] \leq E\left[R_{0}\right]=1$ for all $t>0$. On the other hand, $E\left[1 / S_{t}\right] \leq E\left[1 / R_{0}\right]=1$ for all $t>0$. But by Jensen's inequality $E\left[1 / R_{t}\right] \geq 1 / E\left[R_{t}\right]>1$ and this gives $E\left[1 / R_{t}\right]=1$ and $E\left[R_{t}\right]=1$ for all $t>0$. Note that $x \mapsto 1 / x$ is strictly convex on $(0, \infty)$, so this can happen if and only if $S_{t}=1$, i.e. $X_{t}=Y_{t} P$-a.s. for all $t>0$.

Solution 6.2

(a) By definition of being a σ-martingale, $Z S=\int \psi d M$ for a local martingale M and an integrand $\psi \in L(M)$ with $\psi>0$. Recall that $\mathcal{M}_{0, \text { loc }}=\mathcal{H}_{0, \text { loc }}^{1}$.
Now, let $\left(\rho_{n}\right)$ be a localizing sequence for M such that $M^{\rho_{n}} \in \mathcal{H}_{0}^{1}$ for each n. As in the proof of the Ansel-Stricker theorem (Lemma 4.2 in the lecture notes), for each k, we define $\psi^{k}:=\psi 1_{\{|\psi| \leq k\}}$ and for each n and k define $M^{n, k}:=\int \psi^{k} d M^{\rho_{n}}$, which is in \mathcal{H}_{0}^{1}.
By definition, $M^{n, k} \rightarrow \int \psi d M^{\rho_{n}}$ as $k \rightarrow \infty$ for d_{S} and therefore for d for each fixed n, as well as $\left(\Delta M^{n, k}\right)^{ \pm} \leq\left(\Delta \int \psi d M^{\rho_{n}}\right)^{ \pm}$. Assume for the moment that $\int \psi d M$ has locally a lower bound in L^{1}, which means that there exist a localizing sequence $\left(\tau_{m}\right)$ of stopping times and a sequence of random variables $\left(\gamma_{m}\right) \subseteq L^{1}$ such that $\left(\int \psi d M\right)^{\tau_{m}} \geq \gamma_{m}$ for each m. In particular, we have $\left(\int \psi d M^{\rho_{n}}\right)^{\tau_{m}} \geq \gamma_{m}$ for each n, m. Thus, all the assumptions of Lemma 4.2 are satisfied for each n, which implies that $\int \psi d M^{\rho_{n}}=\left(\int \psi d M\right)^{\rho_{n}} \in \mathcal{M}_{0, \text { loc }}$ for each n. This implies that $\int \psi d M \in \mathcal{M}_{0, \text { loc }}$. So we have proved the claim. Therefore, it remains to show that $Z S=\int \psi d M$ has locally a lower bound in L^{1}.

Let $\left(T_{n}\right)$ be a localizing sequence for the local martingale Z such that each $Z^{T_{n}}$ is an \mathcal{H}^{1}-martingale and define for each $n \in \mathbb{N}$ the stopping times
$\sigma_{n}:=\left\{t \geq 0:\left|S_{t}\right| \geq n\right\}$ and $\widehat{T}_{n}:=\left\{t \geq 0:\left|Z_{t}\right| \geq n\right\}$. Consider the sequence of stopping times $\left(\tau_{n}\right)$ defined by $\tau_{n}:=T_{n} \wedge \widehat{T}_{n} \wedge \sigma_{n}$. By construction, $\left(\tau_{n}\right)$ converges to ∞ a.s. Moreover, as S is continuous and

$$
\sup _{t \geq 0}\left|Z_{t}^{\tau_{n}}\right| \leq n+\left|\Delta Z_{\tau_{n}}\right| \in L^{1}
$$

we obtain for each n that $(Z S)^{\tau_{n}} \geq-n\left(n+\left|\Delta Z_{\tau_{n}}\right|\right) \in L^{1}$.
(b) First let us prove the following result:

Let $Y=\left(Y_{t}\right)_{t \in[0, T]}$ be an adapted RCLL \mathbb{R}^{d}-valued process and $Q \approx P$ an equivalent measure with density process $Z_{t}:=\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{t}}$. Then Y is a $Q-\sigma$ martingale if and only if $Z Y$ is a $P-\sigma$-martingale.
For simplicity, let $d=1$ and $Y_{0}=0$. Suppose that Y is a $Q-\sigma$-martingale such that $Y=\phi \bullet M$ for some Q-local martingale M and some $\phi \in L(M)$ with $\phi>0$. Using the product rule we have

$$
d(Z Y)=Y_{-} d Z+Z_{-} d Y+d[Z, Y]
$$

By the associativity of stochastic integrals, inserting $Y=\phi \bullet M$, we obtain that

$$
\begin{equation*}
Z_{-} d Y=\phi Z_{-} d M=\phi d\left(Z_{-} \bullet M\right) \tag{1}
\end{equation*}
$$

Moreover, we also have

$$
\begin{equation*}
d[Z, Y]=d[Z,(\phi \bullet M)]=\phi d[Z, M] \tag{2}
\end{equation*}
$$

Now we apply the product rule for $Z M$ and obtain that
$d(Z M)=Z_{0} M_{0}+Z_{-} d M+M_{-} d Z+d[M, Z]$, which implies that

$$
\begin{equation*}
Z_{-} \bullet M=Z M-Z_{0} M_{0}-M_{-} \bullet Z-[M, Z] . \tag{3}
\end{equation*}
$$

From (1) and (2) we know that $\phi \in L\left(Z_{-} \bullet M\right)$ and $\phi \in L([M, Z])$, therefore (3) implies that $\phi \in L\left(Z M-Z_{0} M_{0}-M_{-} \bullet Z\right)$ and consequently we have

$$
\begin{aligned}
d(Z Y)=Y_{-} d Z+Z_{-} d Y+d[Z, Y]= & Y_{-} d Z+\phi d\left(Z M-Z_{0} M_{0}-M_{-} \bullet Z\right) \\
& -\phi d[Z, M]+\phi d[Z, M] \\
= & Y_{-} d Z+\phi d\left(Z M-Z_{0} M_{0}-M_{-} \bullet Z\right)
\end{aligned}
$$

Clearly the density process Z is a P-martingale. Moreover, by Bayes' theorem, with M being a Q-local martingale the process $Z M$ is a P-local martingale. Also, by the hint, the stochastic integral $M_{-} \bullet Z$ is a P-local martingale. Hence $Z M-Z_{0} M_{0}-M_{-} \bullet Z$ is a P-local martingale and $\phi \bullet\left(Z M-Z_{0} M_{0}-M_{-} \bullet Z\right)$ is a P - σ-martingale. Since $Y_{-} \bullet Z$ is a P-local martingale, as the sum of two P - σ-martingales, $Z Y=Y_{-} \bullet Z+\phi d\left(Z M-Z_{0} M_{0}-M_{-} \bullet Z\right)$ is also a $P-\sigma$-martingale. By symmetry (we replace Y by $Z Y$ and replace Z by $\frac{1}{Z}$ and
note that $\frac{1}{Z}$ as the density process of $\left.\frac{d P}{d Q}\right|_{\mathcal{F}_{t}}$ is a Q-martingale), we can use the same argument to show the converse.
Now assume that S has a P-E $\sigma \mathrm{MD}$, say, D, so that $D>0$ is a P-local martingale and $D S$ is a P - σ-martingale; and $Q \approx P$ on \mathcal{F}_{T} with density process Z. Define $Y:=\frac{Z_{0}}{Z} D S$. Obviously $Z Y=Z_{0} D S$ is a $P-\sigma$-martingale by assumption. Hence, using the above result, we can deduce that Y is a $Q-\sigma$-martingale. By definition we can conclude that $\frac{Z_{0}}{Z} D$ is a Q-E $\sigma \mathrm{MD}$ for S.
(c) First write $X=1+G(\vartheta)$ for some $G(\vartheta) \geq-1$ We could compute.

$$
\begin{aligned}
Z G(\vartheta) & =G_{-}(\vartheta) \bullet Z+\left(Z_{-} \vartheta\right) \bullet S+[Z, G(\vartheta)] \\
& =G_{-}(\vartheta) \bullet Z+\left(\vartheta Z_{-}\right) \bullet S+\vartheta \bullet[Z, S] \\
& =G_{-}(\vartheta) \bullet Z+\vartheta \bullet(\underbrace{Z-}_{=Z S} \cdot S+[Z, S]+S_{-} \bullet Z \\
Z_{-} & \left.S_{-} \bullet Z\right) \\
& =G_{-}(\vartheta) \bullet Z+\vartheta \bullet(Z S)-\left(S_{-} \vartheta\right) \bullet Z
\end{aligned}
$$

like $Z S$ is a stochastic integral of some P-local martingale and so is $Z X=$ $Z+Z G(\vartheta)$. Moreover, $Z X \geq 0$ and by Ansel-Stricker is a P-supermartingale.

Solution 6.3

(a) $d\langle B, W\rangle_{t}=\rho d t$ because $d\left\langle W, W^{\prime}\right\rangle_{t}=0$, and

$$
\begin{aligned}
\langle S, Y\rangle_{t} & =\left\langle\int \sigma\left(u, S_{u}, Y_{u}\right) d W_{u}, \int a\left(u, Y_{u}\right) d B_{u}\right\rangle_{t} \\
& =\int_{0}^{t} \sigma\left(u, S_{u}, Y_{u}\right) a\left(u, Y_{u}\right) d\langle W, B\rangle_{u}=\int_{0}^{t} \sigma\left(u, S_{u}, Y_{u}\right) a\left(u, Y_{u}\right) \rho d u
\end{aligned}
$$

(b) Let Z^{Q} be the density process of $Q \approx P$. Note that \mathcal{F}_{0} is trivial and Z^{Q} is continuous since the filtration is generated by $\left(W, W^{\prime}\right)$. Defining L^{Q} by

$$
L^{Q}=\int \frac{1}{Z^{Q}} d Z^{Q}
$$

we have $Z^{Q}=\mathcal{E}\left(L^{Q}\right)$. By the Kunita-Watanabe decomposition, L^{Q} is given by

$$
L^{Q}=\int \gamma^{Q} \sigma d W+N^{Q}
$$

with $N^{Q} \in \mathcal{M}_{0, \text { loc }}(P)$ and $\left\langle N^{Q}, \int \sigma d W\right\rangle=0$. By Bayes' rule, Q is an ELMM for S iff $Z^{Q} S \in \mathcal{M}_{\text {loc }}(P)$. By the product rule, we obtain

$$
\begin{aligned}
d\left(Z_{t}^{Q} S_{t}\right) & =Z_{t}^{Q} \sigma_{t} d W_{t}+S_{t} d Z_{t}^{Q}+Z_{t}^{Q}\left(\mu_{t} d t+d\left\langle L^{Q}, \int \sigma d W\right\rangle_{t}\right) \\
& =Z_{t}^{Q} \sigma_{t} d W_{t}+S_{t} d Z_{t}^{Q}+Z_{t}^{Q}\left(\mu_{t} d t+\gamma_{t}^{Q} \sigma_{t}^{2} d t\right)
\end{aligned}
$$

yielding $Z^{Q} S \in \mathcal{M}_{\mathrm{loc}}(P)$ if and only if $\gamma_{t}^{Q}=-\frac{\mu_{t}}{\sigma_{t}^{2}}$. Therefore the equivalent local martingale measures Q are parametrized via

$$
Z^{Q}=\mathcal{E}\left(-\int \frac{\mu}{\sigma} d W+N^{Q}\right)
$$

Since the filtration is generated by $\left(W, W^{\prime}\right)$, we can apply the martingale representation theorem to write N^{Q} as

$$
N^{Q}=\int \psi d W+\int \nu d W^{\prime}
$$

where ψ and ν are some predictable processes. As $\left\langle N^{Q}, \int \sigma d W\right\rangle=0$, it follows that $0=\int \psi_{t} \sigma_{t} d t$ and hence $\psi=0$ so that we finally obtain

$$
\begin{equation*}
Z^{Q}=\mathcal{E}\left(-\int \lambda d W+\int \nu d W^{\prime}\right) \tag{4}
\end{equation*}
$$

where $\lambda=\mu / \sigma$ and ν is some predictable process.
(c) By Girsanov, $\left(W^{Q}, W^{\prime Q}\right)$, defined by $W^{Q}=W+\int \lambda d t$ and $W^{\prime Q}=W^{\prime}-\int \nu d t$, is a 2-dimensional Q-Brownian motion. Plugging this into the SDEs for S and Y gives

$$
d S_{t}=\mu_{t} d t+\sigma_{t}\left(d W_{t}^{Q}-\lambda_{t} d t\right)=\sigma_{t} d W_{t}^{Q}
$$

and

$$
\begin{aligned}
d Y_{t} & =b_{t} d t+a_{t} \rho\left(d W_{t}^{Q}-\lambda_{t} d t\right)+a_{t} \sqrt{1-\rho^{2}}\left(d W_{t}^{\prime Q}+\nu_{t} d t\right) \\
& =\left(b_{t}+a_{t}\left(\sqrt{1-\rho^{2}} \nu_{t}-\rho \lambda_{t}\right)\right) d t+a_{t} d B^{Q}
\end{aligned}
$$

for the Q-Brownian motion $B_{t}^{Q}=\rho W_{t}^{Q}+\sqrt{1-\rho^{2}} W_{t}^{\prime Q}$.

