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Solution 8.1

(a) i) If x ∈ R and ϑ ∈ Θadm with x+ϑ•ST ≥ H ′, then, as H ≤ H ′, x+ϑ•ST ≥ H.
Thus, by definition πs(H) ≤ πs(H ′).
ii) For y := x− c we obtain that

πs(H+c) = inf{x : x+ϑ•ST ≥ H+c} = inf{y : y+ϑ•ST ≥ H}+c = πs(H)+c.

iii) If x ≥ πs(H), then there is a ϑ ∈ Θadm such that x + ϑ • ST ≥ H. This
implies that λx + λϑ • ST ≥ λH, which gives us λπs(H) ≥ πs(λH). For the
other inequality, just note that the same argument applied for λH and 1/λ
yields that 1

λ
πs(λH) ≥ πs(H).

(b) i) S satisfies (NA) ⇐⇒ Gadm ∩ L0
+ = {0} ⇐⇒ ∀g ∈ Gadm, g ≥ 0 ⇒ g = 0

⇐⇒ 0 is an maximal element in Gadm.

ii) If S = (Sk)k=0,1,...,T satisfies (NA), then by Theorem 1.2 in the lecture notes,
we have GT (Θ) ∩ L0

+ = {0}. If GT (ϑ) ∈ GT (Θ) is not a maximal element, then
we can find some ψ ∈ Θ such that GT (ψ) ≥ GT (ϑ) and P [GT (ψ) > GT (ϑ)] > 0.
This means that GT (ψ − ϑ) ≥ 0 and P [GT (ψ − ϑ) > 0] > 0. But since ψ − ϑ
is an element in Θ, this contradicts the fact that GT (Θ) ∩ L0

+ = {0}. Hence
every element in GT (Θ) is maximal in GT (Θ). Clearly, since Gadm ⊂ GT (Θ),
the same conclusion holds also for Gadm.
We can also prove this result for Gadm directly: if S = (Sk)k=0,1,...,T satisfies (NA),
then by Corollary 1.3 in the lecture notes, there is an equivalent martingale
measure Q under which S is a discrete-time martingale. Then, for all ϑ ∈ Θadm,
ϑ • S is also a Q-martingale.
Warning: this fact only holds for finite discrete-time models, for continuous-time
models ϑ • S is not a martingale in general! Hence we have EQ[g] = 0 for all
g ∈ Gadm, which of course implies that g is maximal in Gadm. (Indeed, if h ≥ g,
h > g with positive probability for some h ∈ Gadm, then EQ[h] > 0, which is a
contradiction to EQ[h] = 0.
Remark: Every discrete-time local martingale bounded from below is a true
martingale.

Solution 8.2
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(a) We first show that u is increasing. Let x, y ∈ (0,∞) with x ≤ y and ϑ ∈ Θx
adm.

Clearly x+ ϑ • ST ≤ y + ϑ • ST . Because Θx
adm ⊆ Θy

adm and U is increasing, we
have

E[U(VT (ϑ))] ≤ E[U(y + ϑ • ST )] ≤ u(y).
Taking the supremum over V(x) on the LHS yields u(x) ≤ u(y).
Now we prove the concavity of u. Let λ ∈ [0, 1] and x, y ∈ (0,∞) with x ≤ y.
If ϑx ∈ Θx

adm and ϑy ∈ Θy
adm, we clearly have λϑx + (1− λ)ϑy ∈ Θλx+(1−λ)y

adm . So

u
(
λ(x) + (1− λ)y

)
≥ E

[
U
(
λ(x+ ϑx • ST ) + (1− λ)(y + ϑy • ST )

)]
≥ λE[U(x+ ϑx • ST )] + (1− λ)E[U(y + ϑy • ST )].

Taking the supremum over V(x) and V(y) on the RHS yields
u(λ(x) + (1− λ)y) ≥ λu(x) + (1− λ)u(y).

(b) By part (a), we only need to prove u(x) <∞ for all x ∈ (x0,∞). But clearly
we can find λ ∈ (0, 1) and x < y such that x0 = λx + (1 − λ)y. So by the
concavity of u, we have λu(x) + (1− λ)u(y) ≤ u(x0) which implies

u(x) ≤ u(x0)− (1− λ)u(y)
λ

<∞.

(c) Suppose to the contrary that we have u(x) ≥ U(∞) for some x ∈ (0,∞). It is
clear that U(VT ) ≤ U(∞) for all V ∈ V(x) and hence u(x) = supV ∈V(x) E[U(VT )] ≤
U(∞). So we must have u(x) = U(∞). Let (V n) ⊆ V(x) be such that
E[U(V n

T )] ↑ U(∞). By Lemma 4.4, for each n ∈ N, there exists Ṽ n
T ∈

conv(V n
T , V

n+1
T , . . . ) such that Ṽ n

T → V ∞ P -a.s.. The assumption NFLVR,
in particular NUPBR, implies that conv(V 1

T , V
2
T , . . . ) is bounded in L0 and

hence by Lemma 4.4 again, Ṽ ∞ <∞ P -a.s. The concavity of U implies that
E[U(Ṽ n

T )] ≥ infk≥nE[U(V k
T )] = E[U(V n

T )]. Since U(Ṽ n
T ) ≤ U(∞) for all n ∈ N,

applying the reverse Fatou lemma gives

E[U(V ∞)] ≥ lim sup
n→∞

E[U(Ṽ n
T )] ≥ lim inf

n→∞
E[U(V n

T )] = U(∞).

So clearly E[U(∞)− U(V ∞)] = 0. But U is strictly increasing and V ∞ <∞
P -a.s., so U(∞)− U(Ṽ ∞T ) > 0 P -a.s. which gives a contradiction.

Solution 8.3

(a) Let Z be the density process of Q w.r.t. P . Suppose there exists h ∈ D(z) with
A := {h > zZT} having P [A] > 0 for. Define Mt := EQ[1A|Ft]. Then M ≥ 0
andM0 = Q[A] > 0 due to Q ≈ P . Clearly EQ[MT ] ≤M0 for all Q. By Lemma
6.2, This impliesMT ∈ V(M0) and so E[hMT ] ≤ zM0 by definition of D(z). On
the other hand, E[zZTMT ] = EQ[zMT ] = zM0. It follows E[(h−zZT )MT ] ≤ 0.
But clearly E[(h−zZT )MT ] = E[(h−zZT )1A] > 0 which gives a contradiction.
The other claim easily follows from the first claim.
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(b) The process S1 satisfies

dS1
t = S1

t

(
(µ− r) dt+ σ dWt

)
.

Also recall that S has a unique EMM Q on FT which has density

dQ
dP = E(−λW )T ,

where λ := (µ− r)/σ. It is also easy to calculate

J(z) = 1− γ
γ

z−
−γ

1−γ and J ′(z) = −z−
1

1−γ .

Then by part (a) and the fact that E(aW ) is a P -martingale for every a ∈ R,

j(z) = E

[
1− γ
γ

z−
γ

1−γ
(
E(−λW )T

)− γ
1−γ

]

= 1− γ
γ

z−
γ

1−γE

exp
(

λγ

1− γWT + 1
2
λ2γ

1− γT
)

= 1− γ
γ

z−
γ

1−γ exp
(

1
2

λ2γ

(1− γ)2T

)
E

E ( λγ

1− γW
)
T


= 1− γ

γ
z−

γ
1−γ exp

(
1
2

λ2γ

(1− γ)2T

)
<∞.

(c) “≤” is clear. For “≥”, if we justify the hint, then J(h) ≥ J(z dQ
dP ) and

E[J(h)] ≥ RHS for all h ∈ D(z). Let U = ess supQ∈Pe,σ ZQ;P . Suppose to the
contrary that A := {h > zUT} has P [A] > 0. Then for some δ > 0, the event
Aδ := {h − zUT ≥ δ} ⊂ A has P [Aδ] > 0. Let ε > 0 be arbitrary. Choose
Q̃ ∈ Pe,σ with Q̃[A] ≥ supQQ[A] − ε and define Mt := EQ̃[1A|Ft]. Then
supQEQ[MT ] = supQEQ[A] ≤ Q̃[A]+ε = M0 +ε. By Lemma 10.1, this implies
MT ∈ C(M0 + ε) and so by definition MT ≤ VT for some
VT ∈ V(M0 + ε). Therefore E[hMT ] ≤ z(M0 + ε) by definition of D(z).
However, E[zZQ̃;P

T MT ] = EQ̃[zMT ] = zM0. It follows E[(h− zZQ̃;P )MT ] ≤ zε.
But clearly

E[(h− z ZQ̃;P
T︸ ︷︷ ︸
≤UT

)MT ] ≥ E[(h− zUT )1A] ≥ E[(h− zUT )1Aδ ] ≥ δP [Aδ].

Hence δP [Aδ] ≤ zε but sending ε→ 0 implies P [Aδ] = 0. This is a contradic-
tion.
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