Mathematical Finance
 Solution sheet 8

Solution 8.1

(a) i) If $x \in \mathbb{R}$ and $\vartheta \in \Theta_{\mathrm{adm}}$ with $x+\vartheta \bullet S_{T} \geq H^{\prime}$, then, as $H \leq H^{\prime}, x+\vartheta \bullet S_{T} \geq H$. Thus, by definition $\pi^{s}(H) \leq \pi^{s}\left(H^{\prime}\right)$.
ii) For $y:=x-c$ we obtain that
$\pi^{s}(H+c)=\inf \left\{x: x+\vartheta \bullet S_{T} \geq H+c\right\}=\inf \left\{y: y+\vartheta \bullet S_{T} \geq H\right\}+c=\pi^{s}(H)+c$.
iii) If $x \geq \pi^{s}(H)$, then there is a $\vartheta \in \Theta_{\text {adm }}$ such that $x+\vartheta \bullet S_{T} \geq H$. This implies that $\lambda x+\lambda \vartheta \bullet S_{T} \geq \lambda H$, which gives us $\lambda \pi^{s}(H) \geq \pi^{s}(\lambda H)$. For the other inequality, just note that the same argument applied for λH and $1 / \lambda$ yields that $\frac{1}{\lambda} \pi^{s}(\lambda H) \geq \pi^{s}(H)$.
(b) i) S satisfies (NA) $\Longleftrightarrow \mathcal{G}_{\text {adm }} \cap L_{+}^{0}=\{0\} \Longleftrightarrow \forall g \in \mathcal{G}_{\text {adm }}, g \geq 0 \Rightarrow g=0$ $\Longleftrightarrow 0$ is an maximal element in $\mathcal{G}_{\text {adm }}$.
ii) If $S=\left(S_{k}\right)_{k=0,1, \ldots, T}$ satisfies (NA), then by Theorem 1.2 in the lecture notes, we have $\mathcal{G}_{T}(\Theta) \cap L_{+}^{0}=\{0\}$. If $G_{T}(\vartheta) \in G_{T}(\Theta)$ is not a maximal element, then we can find some $\psi \in \Theta$ such that $G_{T}(\psi) \geq G_{T}(\vartheta)$ and $P\left[G_{T}(\psi)>G_{T}(\vartheta)\right]>0$. This means that $G_{T}(\psi-\vartheta) \geq 0$ and $P\left[G_{T}(\psi-\vartheta)>0\right]>0$. But since $\psi-\vartheta$ is an element in Θ, this contradicts the fact that $\mathcal{G}_{T}(\Theta) \cap L_{+}^{0}=\{0\}$. Hence every element in $G_{T}(\Theta)$ is maximal in $G_{T}(\Theta)$. Clearly, since $\mathcal{G}_{\text {adm }} \subset G_{T}(\Theta)$, the same conclusion holds also for $\mathcal{G}_{\text {adm }}$.
We can also prove this result for $\mathcal{G}_{\text {adm }}$ directly: if $S=\left(S_{k}\right)_{k=0,1, \ldots, T}$ satisfies (NA), then by Corollary 1.3 in the lecture notes, there is an equivalent martingale measure Q under which S is a discrete-time martingale. Then, for all $\vartheta \in \Theta_{\mathrm{adm}}$, $\vartheta \bullet S$ is also a Q-martingale.

Warning: this fact only holds for finite discrete-time models, for continuous-time models $\vartheta \bullet S$ is not a martingale in general! Hence we have $E_{Q}[g]=0$ for all $g \in \mathcal{G}_{\text {adm }}$, which of course implies that g is maximal in $\mathcal{G}_{\text {adm }}$. (Indeed, if $h \geq g$, $h>g$ with positive probability for some $h \in \mathcal{G}_{\text {adm }}$, then $E_{Q}[h]>0$, which is a contradiction to $E_{Q}[h]=0$.

Remark: Every discrete-time local martingale bounded from below is a true martingale.

Solution 8.2

(a) We first show that u is increasing. Let $x, y \in(0, \infty)$ with $x \leq y$ and $\vartheta \in \Theta_{\text {adm }}^{x}$. Clearly $x+\vartheta \bullet S_{T} \leq y+\vartheta \bullet S_{T}$. Because $\Theta_{\mathrm{adm}}^{x} \subseteq \Theta_{\mathrm{adm}}^{y}$ and U is increasing, we have

$$
E\left[U\left(V_{T}(\vartheta)\right)\right] \leq E\left[U\left(y+\vartheta \bullet S_{T}\right)\right] \leq u(y)
$$

Taking the supremum over $\mathcal{V}(x)$ on the LHS yields $u(x) \leq u(y)$.
Now we prove the concavity of u. Let $\lambda \in[0,1]$ and $x, y \in(0, \infty)$ with $x \leq y$. If $\vartheta^{x} \in \Theta_{\mathrm{adm}}^{x}$ and $\vartheta^{y} \in \Theta_{\mathrm{adm}}^{y}$, we clearly have $\lambda \vartheta^{x}+(1-\lambda) \vartheta^{y} \in \Theta_{\mathrm{adm}}^{\lambda x+(1-\lambda) y}$. So

$$
\begin{aligned}
u(\lambda(x)+(1-\lambda) y) & \geq E\left[U\left(\lambda\left(x+\vartheta^{x} \bullet S_{T}\right)+(1-\lambda)\left(y+\vartheta^{y} \bullet S_{T}\right)\right)\right] \\
& \geq \lambda E\left[U\left(x+\vartheta^{x} \bullet S_{T}\right)\right]+(1-\lambda) E\left[U\left(y+\vartheta^{y} \bullet S_{T}\right)\right]
\end{aligned}
$$

Taking the supremum over $\mathcal{V}(x)$ and $\mathcal{V}(y)$ on the RHS yields $u(\lambda(x)+(1-\lambda) y) \geq \lambda u(x)+(1-\lambda) u(y)$.
(b) By part (a), we only need to prove $u(x)<\infty$ for all $x \in\left(x_{0}, \infty\right)$. But clearly we can find $\lambda \in(0,1)$ and $x<y$ such that $x_{0}=\lambda x+(1-\lambda) y$. So by the concavity of u, we have $\lambda u(x)+(1-\lambda) u(y) \leq u\left(x_{0}\right)$ which implies

$$
u(x) \leq \frac{u\left(x_{0}\right)-(1-\lambda) u(y)}{\lambda}<\infty
$$

(c) Suppose to the contrary that we have $u(x) \geq U(\infty)$ for some $x \in(0, \infty)$. It is clear that $U\left(V_{T}\right) \leq U(\infty)$ for all $V \in \mathcal{V}(x)$ and hence $u(x)=\sup _{V \in \mathcal{V}(x)} E\left[U\left(V_{T}\right)\right] \leq$ $U(\infty)$. So we must have $u(x)=U(\infty)$. Let $\left(V^{n}\right) \subseteq \mathcal{V}(x)$ be such that $E\left[U\left(V_{T}^{n}\right)\right] \uparrow U(\infty)$. By Lemma 4.4, for each $n \in \mathbb{N}$, there exists $\tilde{V}_{T}^{n} \in$ $\operatorname{conv}\left(V_{T}^{n}, V_{T}^{n+1}, \ldots\right)$ such that $\tilde{V}_{T}^{n} \rightarrow V^{\infty} P$-a.s.. The assumption NFLVR, in particular NUPBR, implies that $\operatorname{conv}\left(V_{T}^{1}, V_{T}^{2}, \ldots\right)$ is bounded in L^{0} and hence by Lemma 4.4 again, $\tilde{V}^{\infty}<\infty P$-a.s. The concavity of U implies that $E\left[U\left(\tilde{V}_{T}^{n}\right)\right] \geq \inf _{k \geq n} E\left[U\left(V_{T}^{k}\right)\right]=E\left[U\left(V_{T}^{n}\right)\right]$. Since $U\left(\tilde{V}_{T}^{n}\right) \leq U(\infty)$ for all $n \in \mathbb{N}$, applying the reverse Fatou lemma gives

$$
E\left[U\left(V^{\infty}\right)\right] \geq \limsup _{n \rightarrow \infty} E\left[U\left(\tilde{V}_{T}^{n}\right)\right] \geq \liminf _{n \rightarrow \infty} E\left[U\left(V_{T}^{n}\right)\right]=U(\infty)
$$

So clearly $\left.E[U(\infty)-\underset{\tilde{V}}{(})\left(V^{\infty}\right)\right]=0$. But U is strictly increasing and $V^{\infty}<\infty$ P-a.s., so $U(\infty)-U\left(\tilde{V}_{T}^{\infty}\right)>0 P$-a.s. which gives a contradiction.

Solution 8.3

(a) Let Z be the density process of Q w.r.t. P. Suppose there exists $h \in \mathcal{D}(z)$ with $A:=\left\{h>z Z_{T}\right\}$ having $P[A]>0$ for. Define $M_{t}:=E_{Q}\left[\mathbb{1}_{A} \mid \mathcal{F}_{t}\right]$. Then $M \geq 0$ and $M_{0}=Q[A]>0$ due to $Q \approx P$. Clearly $E_{Q}\left[M_{T}\right] \leq M_{0}$ for all Q. By Lemma 6.2, This implies $M_{T} \in \mathcal{V}\left(M_{0}\right)$ and so $E\left[h M_{T}\right] \leq z M_{0}$ by definition of $\mathcal{D}(z)$. On the other hand, $E\left[z Z_{T} M_{T}\right]=E_{Q}\left[z M_{T}\right]=z M_{0}$. It follows $E\left[\left(h-z Z_{T}\right) M_{T}\right] \leq 0$. But clearly $E\left[\left(h-z Z_{T}\right) M_{T}\right]=E\left[\left(h-z Z_{T}\right) \mathbb{1}_{A}\right]>0$ which gives a contradiction. The other claim easily follows from the first claim.
(b) The process S^{1} satisfies

$$
\mathrm{d} S_{t}^{1}=S_{t}^{1}\left((\mu-r) \mathrm{d} t+\sigma \mathrm{d} W_{t}\right)
$$

Also recall that S has a unique EMM Q on \mathcal{F}_{T} which has density

$$
\frac{\mathrm{d} Q}{\mathrm{~d} P}=\mathcal{E}(-\lambda W)_{T}
$$

where $\lambda:=(\mu-r) / \sigma$. It is also easy to calculate

$$
J(z)=\frac{1-\gamma}{\gamma} z^{-\frac{-\gamma}{1-\gamma}} \text { and } J^{\prime}(z)=-z^{-\frac{1}{1-\gamma}} .
$$

Then by part (a) and the fact that $\mathcal{E}(a W)$ is a P-martingale for every $a \in \mathbb{R}$,

$$
\begin{aligned}
j(z) & =E\left[\frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}}\left(\mathcal{E}(-\lambda W)_{T}\right)^{-\frac{\gamma}{1-\gamma}}\right] \\
& =\frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} E\left[\exp \left(\frac{\lambda \gamma}{1-\gamma} W_{T}+\frac{1}{2} \frac{\lambda^{2} \gamma}{1-\gamma} T\right)\right] \\
& =\frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right) E\left[\mathcal{E}\left(\frac{\lambda \gamma}{1-\gamma} W\right)_{T}\right] \\
& =\frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} \exp \left(\frac{1}{2} \frac{\lambda^{2} \gamma}{(1-\gamma)^{2}} T\right)<\infty .
\end{aligned}
$$

(c) " \leq " is clear. For " \geq ", if we justify the hint, then $J(h) \geq J\left(z \frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)$ and $E[J(h)] \geq$ RHS for all $h \in \mathcal{D}(z)$. Let $U=\operatorname{ess}_{\sup }^{Q \in \mathbb{P}_{e, \sigma}} Z^{Q ; P}$. Suppose to the contrary that $A:=\left\{h>z U_{T}\right\}$ has $P[A]>0$. Then for some $\delta>0$, the event $A_{\delta}:=\left\{h-z U_{T} \geq \delta\right\} \subset A$ has $P\left[A_{\delta}\right]>0$. Let $\varepsilon>0$ be arbitrary. Choose $\tilde{Q} \in \mathbb{P}_{e, \sigma}$ with $\tilde{Q}[A] \geq \sup _{Q} Q[A]-\varepsilon$ and define $M_{t}:=E_{\tilde{Q}}\left[\mathbb{1}_{A} \mid \mathcal{F}_{t}\right]$. Then $\sup _{Q} E_{Q}\left[M_{T}\right]=\sup _{Q} E_{Q}[A] \leq \tilde{Q}[A]+\varepsilon=M_{0}+\varepsilon$. By Lemma 10.1, this implies $M_{T} \in \mathcal{C}\left(M_{0}+\varepsilon\right)$ and so by definition $M_{T} \leq V_{T}$ for some $V_{T} \in \mathcal{V}\left(M_{0}+\varepsilon\right)$. Therefore $E\left[h M_{T}\right] \leq z\left(M_{0}+\varepsilon\right)$ by definition of $\mathcal{D}(z)$. However, $E\left[z Z_{T}^{\tilde{Q} ; P} M_{T}\right]=E_{\tilde{Q}}\left[z M_{T}\right]=z M_{0}$. It follows $E\left[\left(h-z Z^{\tilde{Q} ; P}\right) M_{T}\right] \leq z \varepsilon$. But clearly

$$
E[(h-z \underbrace{Z_{T}^{\tilde{Q} ; P}}_{\leq U_{T}}) M_{T}] \geq E\left[\left(h-z U_{T}\right) \mathbb{1}_{A}\right] \geq E\left[\left(h-z U_{T}\right) \mathbb{1}_{A_{\delta}}\right] \geq \delta P\left[A_{\delta}\right] .
$$

Hence $\delta P\left[A_{\delta}\right] \leq z \varepsilon$ but sending $\varepsilon \rightarrow 0$ implies $P\left[A_{\delta}\right]=0$. This is a contradiction.

