Mathematical Finance
Solution sheet 8

Solution 8.1

(a) i) If \(x \in \mathbb{R} \) and \(\vartheta \in \Theta_{\text{adm}} \) with \(x + \vartheta \cdot S_T \geq H' \), then, as \(H \leq H' \), \(x + \vartheta \cdot S_T \geq H \). Thus, by definition \(\pi^s(H) \leq \pi^s(H') \).

ii) For \(y := x - c \) we obtain that
\[
\pi^s(H + c) = \inf \{ x : x + \vartheta \cdot S_T \geq H + c \} = \inf \{ y : y + \vartheta \cdot S_T \geq H \} + c = \pi^s(H) + c.
\]

iii) If \(x \geq \pi^s(H) \), then there is a \(\vartheta \in \Theta_{\text{adm}} \) such that \(x + \vartheta \cdot S_T \geq H \). This implies that \(\lambda x + \lambda \vartheta \cdot S_T \geq \lambda H \), which gives us \(\lambda \pi^s(H) \geq \pi^s(\lambda H) \). For the other inequality, just note that the same argument applied for \(\lambda H \) and \(\lambda^{-1} \) yields that \(\lambda^{-1} \pi^s(\lambda H) \geq \pi^s(H) \).

(b) i) \(S \) satisfies (NA) \(\iff \) \(G_{\text{adm}} \cap L^0_+ = \{0\} \iff \forall g \in G_{\text{adm}}, g \geq 0 \Rightarrow g = 0 \iff 0 \) is a maximal element in \(G_{\text{adm}} \).

ii) If \(S = (S_k)_{k=0,1,...,T} \) satisfies (NA), then by Theorem 1.2 in the lecture notes, we have \(G_T(\Theta) \cap L^0_+ = \{0\} \). If \(G_T(\vartheta) \in G_T(\Theta) \) is not a maximal element, then we can find some \(\psi \in \Theta \) such that \(G_T(\psi) \geq G_T(\vartheta) \) and \(P[G_T(\psi) > G_T(\vartheta)] > 0 \). This means that \(G_T(\psi - \vartheta) \geq 0 \) and \(P[G_T(\psi - \vartheta) > 0] > 0 \). But since \(\psi - \vartheta \) is an element in \(\Theta \), this contradicts the fact that \(G_T(\Theta) \cap L^0_+ = \{0\} \). Hence every element in \(G_T(\Theta) \) is maximal in \(G_T(\Theta) \). Clearly, since \(G_{\text{adm}} \subset G_T(\Theta) \), the same conclusion holds also for \(G_{\text{adm}} \).

We can also prove this result for \(G_{\text{adm}} \) directly: if \(S = (S_k)_{k=0,1,...,T} \) satisfies (NA), then by Corollary 1.3 in the lecture notes, there is an equivalent martingale measure \(Q \) under which \(S \) is a discrete-time martingale. Then, for all \(\vartheta \in \Theta_{\text{adm}}, \vartheta \cdot S \) is also a \(Q \)-martingale.

Warning: this fact only holds for **finite discrete-time models**, for continuous-time models \(\vartheta \cdot S \) is not a martingale in general! Hence we have \(E_Q[g] = 0 \) for all \(g \in G_{\text{adm}} \), which of course implies that \(g \) is maximal in \(G_{\text{adm}} \). (Indeed, if \(h \geq g \), \(h > g \) with positive probability for some \(h \in G_{\text{adm}} \), then \(E_Q[h] > 0 \), which is a contradiction to \(E_Q[g] = 0 \).)

Remark: Every **discrete-time** local martingale bounded from below is a true martingale.

Solution 8.2

Updated: December 14, 2018
(a) We first show that \(u \) is increasing. Let \(x, y \in (0, \infty) \) with \(x \leq y \) and \(\vartheta \in \Theta_{adm}^x \). Clearly \(x + \vartheta \cdot S_T \leq y + \vartheta \cdot S_T \). Because \(\Theta_{adm}^x \subseteq \Theta_{adm}^y \) and \(U \) is increasing, we have

\[
E[U(V_T(\vartheta))] = E[U(y + \vartheta \cdot S_T)] \leq u(y).
\]

Taking the supremum over \(\mathcal{V}(x) \) on the LHS yields \(u(x) \leq u(y) \).

Now we prove the concavity of \(u \). Let \(\lambda \in [0, 1] \) and \(x, y \in (0, \infty) \) with \(x \leq y \). If \(\vartheta^x \in \Theta_{adm}^x \) and \(\vartheta^y \in \Theta_{adm}^y \), we clearly have \(\lambda \vartheta^x + (1 - \lambda) \vartheta^y \in \Theta_{adm}^{\lambda x + (1 - \lambda) y} \). So

\[
u\left(\lambda(x) + (1 - \lambda)y\right) \geq E\left[U\left(\lambda(x + \vartheta^x \cdot S_T) + (1 - \lambda)(y + \vartheta^y \cdot S_T)\right)\right]
\geq \lambda E[U(x + \vartheta^x \cdot S_T)] + (1 - \lambda)E[U(y + \vartheta^y \cdot S_T)].
\]

Taking the supremum over \(\mathcal{V}(x) \) and \(\mathcal{V}(y) \) on the RHS yields

\[
u(\lambda(x) + (1 - \lambda)y) \geq \lambda u(x) + (1 - \lambda)u(y).
\]

(b) By part (a), we only need to prove \(u(x) \leq \infty \) for all \(x \in (0, \infty) \). But clearly we can find \(\lambda \in (0, 1) \) and \(x < y \) such that \(x_0 = \lambda x + (1 - \lambda)y \). So by the concavity of \(u \), we have \(\lambda u(x) + (1 - \lambda) u(y) \leq u(x_0) \) which implies

\[
u(x) \leq \frac{u(x_0) - (1 - \lambda)u(y)}{\lambda} < \infty.
\]

(c) Suppose to the contrary that we have \(u(x) \geq U(\infty) \) for some \(x \in (0, \infty) \). It is clear that \(U(V_T^x) \leq U(\infty) \) for all \(V \in \mathcal{V}(x) \) and hence \(u(x) = \sup_{V \in \mathcal{V}(x)} E[U(V_T^x)] \leq U(\infty) \). So we must have \(u(x) = U(\infty) \). Let \((V_n) \subseteq \mathcal{V}(x) \) be such that \(E[U(V_T^n)] \uparrow U(\infty) \). By Lemma 4.4, for each \(n \in \mathbb{N} \), there exists \(\tilde{V}_T^n \in \text{conv}(V_T^n, V_T^{n+1}, \ldots) \) such that \(\tilde{V}_T^n \rightarrow V^\infty \) P-a.s.. The assumption NFLVR, in particular NUPBR, implies that \(\text{conv}(V_T^1, V_T^2, \ldots) \) is bounded in \(L^0 \) and hence by Lemma 4.4 again, \(V^\infty < \infty \) P-a.s. The concavity of \(U \) implies that \(E[U(V_T^\infty)] \geq \inf_{k \geq n} E[U(V_T^k)] = E[U(V_T^n)] \). Since \(U(\tilde{V}_T^n) \leq U(\infty) \) for all \(n \in \mathbb{N} \), applying the reverse Fatou lemma gives

\[
E[U(V^\infty)] \leq \limsup_{n \to \infty} E[U(\tilde{V}_T^n)] \geq \liminf_{n \to \infty} E[U(V_T^n)] = U(\infty).
\]

So clearly \(E[U(\infty) - U(V^\infty)] = 0 \). But \(U \) is strictly increasing and \(V^\infty < \infty \) P-a.s., so \(U(\infty) - U(\tilde{V}_T^\infty) > 0 \) P-a.s. which gives a contradiction.

Solution 8.3

(a) Let \(Z \) be the density process of \(Q \) w.r.t. \(P \). Suppose there exists \(h \in \mathcal{D}(z) \) with \(A := \{ h > zT_T \} \) having \(P[A] > 0 \) for. Define \(M_t := \mathbb{E}_Q[I_A|\mathcal{F}_t] \). Then \(M \geq 0 \) and \(M_0 = Q[A] > 0 \) due to \(Q \approx P \). Clearly \(E_Q[M_T] \leq M_0 \) for all \(Q \). By Lemma 6.2, this implies \(M_T \in \mathcal{V}(M_0) \) and so \(E[hM_T] \leq zM_0 \) by definition of \(\mathcal{D}(z) \). On the other hand, \(E[zZ_TM_T] = E_Q[zM_T] = zM_0 \). It follows \(E[(h - zZ_T)M_T] \leq 0 \). But clearly \(E[(h - zZ_T)M_T] = E[(h - zZ_T)I_A] > 0 \) which gives a contradiction. The other claim easily follows from the first claim.
(b) The process S^1 satisfies
\[dS^1_t = S^1_t \left((\mu - r) \, dt + \sigma \, dW_t \right). \]

Also recall that S has a unique EMM Q on \mathcal{F}_T which has density
\[\frac{dQ}{dP} = \mathcal{E}(-\lambda W)_T, \]
where $\lambda := (\mu - r)/\sigma$. It is also easy to calculate
\[J(z) = \frac{1 - \gamma}{\gamma} z^{-\frac{\gamma}{1 - \gamma}} \ \text{and} \ J'(z) = -z^{-\frac{1}{1 - \gamma}}. \]

Then by part (a) and the fact that $\mathcal{E}(aW)$ is a P-martingale for every $a \in \mathbb{R}$,
\[j(z) = E \left[\frac{1 - \gamma}{\gamma} z^{-\frac{\gamma}{1 - \gamma}} \left(\mathcal{E}(-\lambda W)_T \right)^{-\frac{\gamma}{1 - \gamma}} \right] \]
\[= \frac{1 - \gamma}{\gamma} z^{-\frac{\gamma}{1 - \gamma}} E \left[\exp \left(\frac{\lambda \gamma}{1 - \gamma} W_T + \frac{1}{2} \frac{\lambda^2 \gamma}{1 - \gamma} T \right) \right] \]
\[= \frac{1 - \gamma}{\gamma} z^{-\frac{\gamma}{1 - \gamma}} \exp \left(\frac{1}{2} \frac{\lambda^2 \gamma}{(1 - \gamma)^2} T \right) E \left[\mathcal{E} \left(\frac{\lambda \gamma}{1 - \gamma} W \right) \right] \]
\[= \frac{1 - \gamma}{\gamma} z^{-\frac{\gamma}{1 - \gamma}} \exp \left(\frac{1}{2} \frac{\lambda^2 \gamma}{(1 - \gamma)^2} T \right) < \infty. \]

(c) “\leq” is clear. For “\geq”, if we justify the hint, then $J(h) \geq J(z \frac{dQ}{dP})$ and $E[J(h)] \geq \text{RHS}$ for all $h \in \mathcal{D}(z)$. Let $U = \text{ess sup}_{Q \in \mathcal{P}_{e,\sigma}} Z_{Q-P}$. Suppose to the contrary that $A := \{ h > zU_T \}$ has $P[A] > 0$. Then for some $\delta > 0$, the event $A_\delta := \{ h - zU_T \geq \delta \} \subset A$ has $P[A_\delta] > 0$. Let $\varepsilon > 0$ be arbitrary. Choose $\bar{Q} \in \mathcal{P}_{e,\sigma}$ with $\bar{Q}[A] \geq \sup_Q Q[A] - \varepsilon$ and define $M_t := \bar{E}_\bar{Q}[1_A | \mathcal{F}_t]$. Then $\sup_Q E_{\bar{Q}}[M_T] = \sup_Q E_Q[A] \leq \bar{Q}[A] + \varepsilon = M_0 + \varepsilon$. By Lemma 10.1, this implies $M_T \in \mathcal{C}(M_0 + \varepsilon)$ and so by definition $M_T \leq V_T$ for some $V_T \in \mathcal{V}(M_0 + \varepsilon)$. Therefore $E[hM_T] \leq z(M_0 + \varepsilon)$ by definition of $\mathcal{D}(z)$. However, $E[zZ_T^{\bar{Q},P} M_T] = \bar{E}_\bar{Q}[zM_T] = zM_0$. It follows $E[(h - zZ_{\bar{Q},P} M_T) \leq \varepsilon]$. But clearly
\[E[(h - zZ_{\bar{Q},P}^{\bar{Q},P}) M_T] \geq E[(h - zU_T) 1_A] \geq E[(h - zU_T) 1_{A_\delta}] \geq \delta P[A_\delta]. \]

Hence $\delta P[A_\delta] \leq \varepsilon \varepsilon$ but sending $\varepsilon \to 0$ implies $P[A_\delta] = 0$. This is a contradiction.