Mathematical Finance Solution sheet 9

Solution 9.1

(a) Because U is concave and C^{1}, we have that $U^{\prime}(x)$ is decreasing. Fix $x_{0}>0$. The mapping $x \mapsto \frac{U(x)-U\left(x_{0}\right)}{x-x_{0}}$ is also decreasing. By the mean value theorem, we have

$$
\frac{U(x)-U\left(x_{0}\right)}{x-x_{0}}=U^{\prime}\left(x^{\prime}\right)
$$

for some $x^{\prime} \in\left[x_{0}, x\right]$. Hence, for all $x>x_{0}$,

$$
\frac{x-x_{0}}{U(x)-U\left(x_{0}\right)} U^{\prime}(x)=\frac{U^{\prime}(x)}{U^{\prime}\left(x^{\prime}\right)} \leq 1
$$

If $U(\infty) \leq 0$, then clearly $A E_{+\infty}(U) \leq 0$. So assume $U(\infty)>0$ and $U\left(x_{0}\right)>0$. Then for $x>x_{0}$, we have

$$
\frac{x}{U(x)} \leq \frac{x}{U(x)-U\left(x_{0}\right)}
$$

Together with $\frac{x-x_{0}}{x} \rightarrow 1$ as $x \rightarrow \infty$, we obtain

$$
\limsup _{x \rightarrow \infty} \frac{x U^{\prime}(x)}{U(x)} \leq \limsup _{x \rightarrow \infty} \frac{x-x_{0}}{U(x)-U\left(x_{0}\right)} U^{\prime}(x) \leq 1 .
$$

(b) By definition, we have

$$
\begin{equation*}
A E_{+\infty}(U)=\inf \left\{\gamma>0: \exists x_{0} \text { s.t. } U^{\prime}(x)<\gamma U(x) / x, \forall x \geq x_{0}\right\}=: R . \tag{1}
\end{equation*}
$$

So we need to show

$$
R=\inf \left\{\gamma>0: \exists x_{0} \text { s.t. } U(\lambda x)<\lambda^{\gamma} U(x) \forall \lambda>1, x \geq x_{0}\right\} .
$$

Set $F(\lambda):=U(\lambda x)$ and $G(\lambda)=\lambda^{\gamma} U(x)$ for $\lambda>1$.
" \geq ": Fix $x>x_{0}, \gamma>0$ satisfying the property of R. Clearly
$F(1)=U(x)=G(1)$ and $F^{\prime}(1)=x U^{\prime}(x)<\gamma U(x)=G^{\prime}(1)$. Hence $F(\lambda)<G(\lambda)$ on $(1,1+\varepsilon)$ for some $\varepsilon>0$. Set $\tilde{\lambda}:=\inf \{\lambda>1: F(\lambda)=G(\lambda)\}$. We only need to argue that $\tilde{\lambda}=\infty$. But if not, we must have $F^{\prime}(\tilde{\lambda}) \geq G^{\prime}(\tilde{\lambda})$ which contradicts to

$$
F^{\prime}(\tilde{\lambda})=x U^{\prime}(\tilde{\lambda} x) \underbrace{<}_{(1)} \frac{\gamma}{\tilde{\lambda}} U(\tilde{\lambda} x)=\frac{\gamma}{\tilde{\lambda}} F(\tilde{\lambda})=\frac{\gamma}{\tilde{\lambda}} G(\tilde{\lambda})=G^{\prime}(\tilde{\lambda}) .
$$

" \leq ": Let γ be such that it satisfies the property on RHS in (1). Then $F(1)=G(1)$ and $F(\lambda)<G(\lambda)$ for all $\lambda>1$ give $F^{\prime}(1) \leq G^{\prime}(1)$. Hence

$$
U^{\prime}(x)=\frac{F^{\prime}(1)}{x} \leq \frac{G^{\prime}(1)}{x}=\gamma \frac{U(x)}{x}
$$

(c) We first argue that $A E_{+}(u) \leq A E_{+}(U)$. WLOG, we may assume that $U(\infty)>0$. Let $\gamma>A E_{+}(U)$. Then by part (b), there is $x_{0}>0$ such that

$$
\begin{equation*}
U(\lambda x)<\lambda^{\gamma} U(x) \text { for } \lambda>1, x>x_{0} . \tag{2}
\end{equation*}
$$

So it is enough to show that there is $x_{1}>0$ such that

$$
\begin{equation*}
u(\lambda x)<\lambda^{\gamma} u(x) \text { for } \lambda>1, x>x_{1} \tag{3}
\end{equation*}
$$

Assume for the moment that $x_{0}=0$. Then using $\frac{1}{\lambda} I\left(h_{\lambda x}^{*}\right) \in \mathcal{C}(x)$ gives

$$
u(\lambda x)=E\left[U\left(I\left(h_{\lambda x}^{*}\right)\right)\right] \leq E\left[\lambda^{\gamma} U\left(\frac{I\left(h_{\lambda x}^{*}\right)}{\lambda}\right)\right] \leq \lambda^{\gamma} u(x) \text { for all } x>0
$$

For the general case, we define

$$
\tilde{U}:= \begin{cases}c_{1} \frac{x^{\gamma}}{\gamma} & x \leq x_{0} \\ c_{2}+U(x) & x \geq x_{0}\end{cases}
$$

which is C^{1} on $(0, \infty)$. Then \tilde{U} satisfies (2) with $x_{0}=0$. Hence the corresponding \tilde{u} satisfies (3) with $x_{1}=0$. Thus taking the infimum over γ yields $A E_{+}(\tilde{u}) \leq A E_{+\infty}(U)$. Now we show that \tilde{u} and and u are close to each other for large x. Then by the hint, the proof is complete. Clearly there exists $K>0$ such that

$$
U(x)-K \leq \tilde{U}(x) \leq U\left(x+x_{0}\right)+K, \text { for all } x>0
$$

hence we also have

$$
u(x)-K \leq \tilde{u}(x) \leq u\left(x+x_{0}\right)+K
$$

Thus there exists $C>0$ and $x_{2}>0$ such that

$$
u(x)-C \leq \tilde{u}(x) \leq u(x)+C \text { for } x \geq x_{2}
$$

This proves $A E_{+\infty}(u)=A E_{+\infty}(\tilde{u}) \leq A E_{+\infty}(U)<1$. To show $u^{\prime}(\infty)=0$, we argue by assuming that $u^{\prime}(\infty)=c>0$ and seeking a contradiction. Then since u is strictly concave, we have that u^{\prime} is decreasing and for large x

$$
\frac{x u^{\prime}(x)}{u(x)} \geq \frac{x u^{\prime}(\infty)}{u(x)} \underbrace{\sim}_{\text {l'Hospital's rule }} \frac{u^{\prime}(\infty)}{u^{\prime}(x)} \rightarrow \frac{c}{c}=1
$$

This is a contradiction.

Solution 9.2 By definition, we have $J_{n}(h) \geq U(f)-f h$ for all $f \in \mathcal{B}_{n}$. So $E\left[J_{n}(h)\right] \geq$ $E[U(f)-f h]$ and taking the supremum yields " \geq ". Now for fixed h, the mapping $x \mapsto U(x)-x h$ is concave and so the maximiser x^{*} is either in $(0, n)$ or $>n$. In the first case, we have $x=I(h)$ and in particular $\max _{x \in[0, n]}(U(x)-x h)=U(I(h))-h I(h)$. In the second case, we must have $\max _{x \in[0, n]}(U(x)-x h)=U(n)-n h$. Then obviously, $f^{*}:=I(h) \wedge n \in \mathcal{B}_{n}$ and maximizes $x \mapsto U(x)-x h$ on $[0, n] P$-a.s. Thus the claim is established.

Solution 9.3

(a) First observe that by assumption K is bounded, thus $E\left[\exp \left(\frac{1}{2}\langle-\lambda \bullet M\rangle_{T}\right)\right]=$ $E\left[\exp \left(\frac{1}{2} K_{T}\right)\right]<\infty$. By Novikov's condition, \hat{Z} is therefore a martingale >0 on $[0, T]$ and \hat{P} is an equivalent probability measure. To show that S is a local martingale under \hat{P}, we compute

$$
\begin{aligned}
\mathrm{d}(\hat{Z} S) & =\hat{Z} \mathrm{~d} S+S \mathrm{~d} \hat{Z}+\mathrm{d}\langle\hat{Z}, S\rangle \\
& =\hat{Z} \mathrm{~d} M+\hat{Z} \lambda \mathrm{~d}\langle M\rangle-S \hat{Z} \lambda \mathrm{~d} M-\hat{Z} \lambda \mathrm{~d}\langle M\rangle \\
& =(\hat{Z}-S \hat{Z} \lambda) \mathrm{d} M .
\end{aligned}
$$

(b) We compute, for any $p \in \mathbb{R}$,

$$
\begin{aligned}
\hat{Z}_{T}^{p} & =\exp \left(-p \lambda \bullet M_{T}-\frac{1}{2} p \lambda^{2} \cdot\langle M\rangle_{T}\right) \\
& =\exp \left(-p \lambda \bullet M_{T}-\frac{1}{2} p^{2} \lambda^{2} \bullet\langle M\rangle_{T}\right) \exp \left(\frac{1}{2}\left(p^{2}-p\right) \lambda^{2} \bullet\langle M\rangle_{T}\right) \\
& =\mathcal{E}(-p \lambda \bullet M)_{T} \exp \left(\left(p^{2}-p\right) K_{T}\right)
\end{aligned}
$$

So $E\left[\hat{Z}_{T}^{p}\right] \leq C E\left[\mathcal{E}(-p \lambda \bullet M)_{T}\right]<\infty$ by the fact that $\mathcal{E}(-p \lambda \bullet M)$ is a supermartingale and the boundedness of K again.

