FS19

Prof. Dr. Özlem Imamoglu

Serie 5

EIGENWERTE, LINEARFORMEN

1. Sei $V = \mathbb{R}^{2\times 2}$ der Vektorraum der reellen Matrizen, siehe Aufgabe 2 aus der Serie 3. Seien φ und $\tilde{\varphi}$ die lineare Transformationen $V \to V$, die definiert sind durch

$$\varphi(A) = A - A^T, \quad \tilde{\varphi}(A) = A \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} A.$$

- (a) Finde Eigenwerte und Eigenvektoren von φ .
- (b) Ist φ diagonalisierbar? Wenn ja, bestimme eine Eigenbasis \mathcal{E}_{φ} und die Matrixdarstellung von φ bezüglich \mathcal{E}_{φ} .
- (c) Finde die Eigenwerte von $\tilde{\varphi}$. Ist $\tilde{\varphi}$ diagonalisierbar?
- 2. Sei $V = \mathbb{R}[x]_{\leqslant 3}$ der Vektorraum der reellen Polynome vom Grad $\leqslant 3$. Sei $\{e_0, \ldots, e_3\}$ die Standardbasis von V, wobei $e_i := x^i$. Gegeben sind die folgenden Linearformen $V \to \mathbb{R}$:

$$\begin{split} \theta^0(f(x)) &:= f(0), \qquad \theta^1(f(x)) := f'(0), \\ \theta^2(f(x)) &:= f''(0), \qquad \theta^3(f(x)) := f'''(0). \end{split}$$

Weiter sei $a \in \mathbb{R}$ und $\alpha : V \to \mathbb{R}$ die Linearform definiert durch $\alpha(f(x)) := f(a)$.

(a) Zeige, dass das folgende für $I, J \in \{0, 1, 2, 3\}$ gilt:

$$\theta^I(e_J) = \begin{cases} I! & \text{wenn } I = J \\ 0 & \text{sonst.} \end{cases}$$

- (b) Berechne die Ausdrücke $\theta^i(e_j) \cdot \theta^j(e_i)$ und $\theta^i(e_i) \cdot \theta^j(e_j)$.
- (c) Zeige, dass die Linearformen $\theta^0, \dots, \theta^3 \in V^*$ eine Basis von V^* bilden.
- (d) Finde $\alpha_0, \ldots, \alpha_3 \in \mathbb{R}$, die $\alpha = \alpha_i \theta^i$ entfüllen, d.h., die Komponenten von α bezüglich der Basis $\{\theta^0, \ldots, \theta^3\}$ von V^* .
- 3. Gegeben ist eine Nummer $a \in \mathbb{R}$ und die Vektoren

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \\ a \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1-a \\ 0 \end{bmatrix}.$$

- (a) Zeige, dass $\mathcal{B} = \{v_1, v_2, v_3\}$ eine Basis von \mathbb{R}^3 bilden, wenn und nur wenn $a \notin \{-1, 0\}$.
- (b) Nehmen wir an, dass $a \in \mathbb{R} \setminus \{-1, 0\}$. Sei $\psi : \mathbb{R}^3 \to \mathbb{R}^3$ die lineare Transformation, die $v_1 \mapsto v_2$ bzw. $v_2 \mapsto v_1$ bzw. $v_3 \mapsto e_1 + (a+2)e_2 + e_3$ schickt. Für welche Werte von a ist ψ diagonalisierbar?

Abgabetermin: 02.04.2019.