Allgemeine Wahrscheinlichkeitsräume, Zufallsvariablen usw.

Ein Wahrscheinlichkeitsraum (kurz WR) ist ein Tripel (Ω, \mathcal{F}, P) . Dabei ist $\Omega \neq \emptyset$ eine Menge (die Menge aller Elementarereignisse $\omega \in \Omega$), \mathcal{F} eine σ -Algebra (die Familie aller beobachtbaren Ereignisse) und P ein Wahrscheinlichkeitsmass auf \mathcal{F} .

Eine σ -Algebra auf einer Menge $\Omega \neq \emptyset$ ist ein Mengensystem, also eine Teilmenge der Potenzmenge 2^{Ω} von Ω , mit folgenden Eigenschaften:

- 1) Ω ist in \mathcal{F} .
- 2) Ist $A \in \mathcal{F}$, so ist auch das Komplement A^c in \mathcal{F} .
- 3) Ist $(A_i)_{i\in\mathbb{N}}$ eine Folge von Mengen in \mathcal{F} , so ist auch die Vereinigung $\bigcup_{i=1}^{\infty} A_i$ in \mathcal{F} .

Ein Wahrscheinlichkeitsmass auf einer σ -Algebra \mathcal{F} ist eine Abbildung $P: \mathcal{F} \to [0,1]$ mit folgenden Eigenschaften:

- 1) $P[\Omega] = 1$.
- 2) Ist $(A_i)_{i\in\mathbb{N}}$ eine Folge von Mengen in \mathcal{F} , die paarweise disjunkt sind, d.h. $A_i\cap A_k=\emptyset$ für $i\neq k$, so gilt

$$P\bigg[\bigcup_{i=1}^{\infty} A_i\bigg] = \sum_{i=1}^{\infty} P[A_i].$$

Mit der Notation ⊍ für eine Vereinigung von paarweise disjunkten Mengen können wir 2) auch kompakter schreiben als

$$P\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} P[A_i].$$

Bemerkung. Ist Ω endlich oder abzählbar, so kann man als σ -Algebra meistens $\mathcal{F}=2^{\Omega}$ nehmen. Ist Ω überabzählbar, so geht das in der Regel nicht und man muss ein echtes Teilsystem der Potenzmenge als σ -Algebra nehmen.

Eine beliebige Kollektion von Ereignissen $(A_{\lambda})_{\lambda \in \Lambda}$ heisst unabhängig, falls für jede

endliche Teilfamilie A_1, \ldots, A_n die Produktformel gilt, d.h.

$$P\left[\bigcap_{i=1}^{n} A_i\right] = \prod_{i=1}^{n} P[A_i].$$

Ist \mathcal{F} eine σ -Algebra auf $\Omega \neq \emptyset$, so ist eine *Zufallsvariable* (kurz ZV) eine Abbildung $X: \Omega \to \mathbb{R}$, die (bezüglich \mathcal{F}) messbar ist, d.h. die Menge $\{X \leq t\} = \{\omega \in \Omega : X(\omega) \leq t\}$ ist in \mathcal{F} für all $t \in \mathbb{R}$.

Wie im diskreten Fall kann man statt reellwertige Zufallsvariablen auch Zufallsvariablen mit Werten in einer (vernünftigen) Menge U betrachten. Die Definition der Messbarkeit wird dann analog angepasst.

Ist X eine ZV auf Ω und P ein Wahrscheinlichkeitsmass auf Ω , so ist die Verteilung von X ein Wahrscheinlichkeitsmass auf dem Wertebereich $W(X) \subseteq \mathbb{R}$ von X. Wir bezeichnen sie mit μ_X und haben

$$\mu_X(B) := P[X \in B] := P[\{\omega \in \Omega : X(\omega) \in B\}] \qquad \text{für alle Borel-Mengen } B \subseteq I\!\!R.$$

Das ist analog zum diskreten Fall. Eine Gewichtsfunktion von X ist in der Regel nicht nützlich, weil meistens für feste $x \in W(X)$ gilt P[X = x] = 0. Die Verteilungsfunktion (kurz VF) von X ist wie im diskreten Fall die Abbildung

$$F_X : \mathbb{R} \to [0, 1], \quad t \mapsto F_X(t) := P[X \le t].$$

Sei X eine ZV mit VF F_X . Falls wir F_X schreiben können als $F_X(t) = \int_{-\infty}^t f_X(s) \, ds$ für alle $t \in \mathbb{R}$ mit einer Funktion $f_X : \mathbb{R} \to [0, \infty)$, so nennen wir F_X absolutstetig mit Dichte oder Dichtefunktion f_X . In diesem Fall nennen wir f_X auch die Dichte von X.

Ist X eine ZV auf einem WR (Ω, \mathcal{F}, P) , die eine Dichtefunktion f_X hat, so ist der Erwartungswert von X gegeben als

$$E[X] := \int_{-\infty}^{\infty} x f_X(x) \, dx,$$

sofern $\int_{-\infty}^{\infty} |x| f_X(x) dx$.