Assignment 16

SEPARABILITY, COMPUTATION OF AUTOMORPHISM GROUPS

- 1. Let $f \in k[X]$ and let $E \supset k$ be a splitting field of f. We want to prove that f has no multiple root in E if and only if $gcd_{k[X]}(f, f') = 1$.
 - (a) Let F/k be a field extension and $f, g \in k[X]$. Prove that $gcd_{k[X]}(f,g) = 1$ if and only if $gcd_{F[X]}(f,g) = 1$.
 - (b) Write $f = \prod_{i=1}^{n} (X \alpha_i)$ in E[X]. Establish the formula

$$\prod_{i=1}^{n} f'(\alpha_i) = \pm \left(\prod_{i < j} (\alpha_i - \alpha_j)\right)^2.$$

- (c) Use the above steps in order to conclude.
- 2. Let p be a prime number and $\zeta := e^{\frac{2\pi i}{p}}$ a primitive p-th root of unity. Consider the polynomial $\varphi_p := \frac{X^p 1}{X 1} \in \mathbb{Q}[X]$ with splitting field E.
 - (a) Prove that φ_p is irreducible in $\mathbb{Q}[X]$ and deduce that φ_p is the minimal polynomial of ζ over \mathbb{Q} .
 - (b) Show that $E = \mathbb{Q}(\zeta)$.
 - (c) Prove that $\operatorname{Aut}(E/\mathbb{Q}) = (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- 3. Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - (a) Prove that $[E:\mathbb{Q}] = 4$.
 - (b) Show that $\operatorname{Aut}(E/\mathbb{Q}) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 4. Show that the Galois group of $X^3 2 \in \mathbb{Q}[X]$ is isomorphic to S_3 .

Hint: Let *E* be the splitting field of $X^3 - 2$. Find the roots of $X^3 - 2$ in \mathbb{C} . Consider the intermediate extension $\mathbb{Q}(\exp(2\pi i/3))/\mathbb{Q}$ of *E* and show that $[E:\mathbb{Q}] > 3$.