Prof. Rahul Pandharipande

Assignment 16

Separability, computation of automorphism groups

1. Let $f \in k[X]$ and let $E \supset k$ be a splitting field of f. We want to prove that f has no multiple root in E if and only if $\operatorname{gcd}_{k[X]}\left(f, f^{\prime}\right)=1$.
(a) Let F / k be a field extension and $f, g \in k[X]$. Prove that $\operatorname{gcd}_{k[X]}(f, g)=1$ if and only if $\operatorname{gcd}_{F[X]}(f, g)=1$.
(b) Write $f=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$ in $E[X]$. Establish the formula

$$
\prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right)= \pm\left(\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)\right)^{2}
$$

(c) Use the above steps in order to conclude.
2. Let p be a prime number and $\zeta:=e^{\frac{2 \pi i}{p}}$ a primitive p-th root of unity. Consider the polynomial $\varphi_{p}:=\frac{X^{p}-1}{X-1} \in \mathbb{Q}[X]$ with splitting field E.
(a) Prove that φ_{p} is irreducible in $\mathbb{Q}[X]$ and deduce that φ_{p} is the minimal polynomial of ζ over \mathbb{Q}.
(b) Show that $E=\mathbb{Q}(\zeta)$.
(c) Prove that $\operatorname{Aut}(E / \mathbb{Q})=(\mathbb{Z} / p \mathbb{Z})^{\times}$.
3. Let $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(a) Prove that $[E: \mathbb{Q}]=4$.
(b) Show that $\operatorname{Aut}(E / \mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
4. Show that the Galois group of $X^{3}-2 \in \mathbb{Q}[X]$ is isomorphic to S_{3}.

Hint: Let E be the splitting field of $X^{3}-2$. Find the roots of $X^{3}-2$ in \mathbb{C}. Consider the intermediate extension $\mathbb{Q}(\exp (2 \pi i / 3)) / \mathbb{Q}$ of E and show that $[E: \mathbb{Q}]>3$.

