Assignment 17

FIXED SUBFIELD

- 1. Let E/k be a splitting field of $X^n 1 \in k[X]$ and $\Gamma_n(E)$ the subgroup of E^{\times} of *n*-th roots of unity. Show that
 - (a) If char(k) = 0, then $|\Gamma_n(E)| = n$.
 - (b) If char(k) = p, and $n = p^{\ell}m$ with $p \nmid m$, then $|\Gamma_n(E)| = m$.
- 2. Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Recall that $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. List all subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and for each subgroup H determine the subfield E^H .
- 3. Let p be a prime number and let $m \ge 1$. Prove that the field extension $\mathbb{F}_{p^m}/\mathbb{F}_p$ is Galois and calculate its Galois group.

Hint. Frobenius automorphism.