Assignment 18

RADICAL EXTENSIONS, TRANSITIVE GROUP ACTIONS

- 1. Let $f = X^3 + pX + q \in \mathbb{Q}[X]$ be an irreducible polynomial. Let $z_1, z_2, z_3 \in \mathbb{C}$ be the roots of f and E its splitting field.
 - (a) Define the *discriminant* of f as

$$D(f) := \prod_{i < j} (z_i - z_j)^2.$$

Prove that $D(f) = -4p^3 - 27q^2 \neq 0$. *Hint:* $f = (X - z_1)(X - z_2)(X - z_3)$

- (b) Check that E contains the square roots of D(f).
- (c) Suppose that D(f) is not a square in \mathbb{Q} . Show that $\operatorname{Gal}(E/\mathbb{Q}) = S_3$.
- (d) Suppose that D(f) is a square in \mathbb{Q} . Show that there exists no automorphism $\sigma \in \operatorname{Gal}(E/\mathbb{Q})$ switching z_1 and z_2 and deduce that $\operatorname{Gal}(E/\mathbb{Q}) = A_3$.
- (e) Prove that the roots of f are all real if and only if D(f) > 0. Else, f has one real root and two non-real conjugated roots.
- 2. (Artin-Schreier extension) Let k be a field of characteristic 2 and K/k a quadratic extension such that |Gal(K/k)| = 2. Show that there exist $\beta \in K$ and $a \in k$ such that β is a root of $X^2 X + a \in k[X]$ and $K = k(\beta)$.
- 3. Let G be a group acting on a set X with at least two elements. We say that the action is *doubly transitive* if for each $x_1, x_2, y_1, y_2 \in X$ with $x_1 \neq x_2$ and $y_1 \neq y_2$ there exists $g \in G$ such that $g \cdot x_i = y_i$ for i = 1, 2. Show that the following statements are true:
 - (a) S_n acts doubly transitively on $\{1, \ldots, n\}$ for each $n \ge 2$.
 - (b) A_n acts doubly transitively on $\{1, \ldots, n\}$ for each $n \ge 4$.
 - (c) For each $n \ge 4$ the group D_n does not act doubly transitively on the vertices of an *n*-gon (see Assignment 8, Exercise 7).