Assignment 19

NORMALITY AND SEPARABILITY

- 1. Let $f \in k[X]$ be a monic polynomial which splits into linear factors over k. Suppose that $\sigma \in Aut(k)$ fixes each root of f. Prove that σ fixes all the coefficients of f.
- 2. Let E/k be a splitting field of $f \in k[X]$ and consider an extension k' of k and the splitting field E' of f over k'. Show that each $\sigma \in \operatorname{Aut}(E'/k')$ satisfies $\sigma(E) = E$ and that the resulting homomorphism

$$\varphi \colon \operatorname{Aut}(E'/k') \longrightarrow \operatorname{Aut}(E/k)$$
$$\sigma \longmapsto \sigma|_E$$

is injective.

- 3. Let E/k be a finite field extension and let \overline{E} be an algebraic closure of E (and thus of k).
 - (a) Prove that the following are equivalent:
 - (i) For every k-homomorphism $\varphi \colon E \to \overline{E}$ we have $\varphi(E) \subset E$.
 - (ii) Every irreducible polynomial $f \in k[X]$ with a root in E splits into linear factors over E.
 - (iii) E is the splitting field of some polynomial $f \in k[X]$.

Hint. Prove (ii) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (ii) and use the fact that every k-homomorphism $K \rightarrow \bar{K}$ can be extended to a k-homomorphism $K(a) \rightarrow \bar{K}$ for any $a \in \bar{K}$.

- (b) Suppose that the minimal polynomial over k of any element in E has distinct roots in \overline{E} . Prove that E/k is Galois if and only if every irreducible polynomial $f \in k[X]$ with a root in E splits into linear factors over E.
- 4. Show that $\operatorname{Aut}(\mathbb{R}) = {\operatorname{id}_{\mathbb{R}}}.$