Assignment 22

EXTENSIONS OF FINITE FIELDS, SPLITTING FIELDS

- 1. Let L_1/K_1 and L_2/K_2 be two field extensions and $\varphi: L_1 \longrightarrow L_2$ an isomorphism of fields such that $\varphi(K_1) = K_2$. Prove that $[L_1:K_1] = [L_2:K_2]$.
- 2. Let p be a prime number. By factoring $X^{p-1}-1$ over \mathbb{F}_p , show that

$$(p-1)! + 1 \equiv 0 \pmod{p}.$$

- 3. Let $f = X^3 X + 1 \in \mathbb{F}_3[X]$.
 - (a) Show that f is irreducible in $\mathbb{F}_3[X]$.
 - (b) Show that if E is a splitting field and $\rho \in E$ is a root, then so are $\rho + 1$ and $\rho 1$.
 - (c) Construct a splitting field of f and write out its multiplication table.
 - (d) Write down explicitly the action of $Gal(E/\mathbb{F}_3)$ on the elements of E.
- 4. Let E/F/k be field extensions such that E/F and F/k are finite Galois extensions.
 - (a) Give an example where the extension E/k is Galois.
 - (b) Is E/k necessarily Galois? If not, provide a counterexample.