Algebra II

D-MATH Prof. Rahul Pandharipande

Assignment 23

Solvability by Radicals. Recap.

- 1. Prove that the groups S_2, S_3 and S_4 are solvable.
- 2. Let k be a field and n = 2d a positive even integer. Let $f = \sum_{j=0}^{n} a_j X^j \in k[X]$ be a monic polynomial of degree n without multiple roots and suppose that f has no root in k. Suppose moreover that f is palindromic, that is, $a_j = a_{n-j}$ for each $j \in \{0, \ldots, d\}$. Let E be the splitting field of f.
 - (a) Prove that $x \mapsto \frac{1}{x}$ is a well-defined bijection on the set of roots of f.
 - (b) Deduce that $\# \operatorname{Gal}(E/k)$ divides $2^d d!$.
- 3. For each of the following polynomials, determine the Galois group of its splitting field:
 - (a) $X^4 + 2X^3 + X^2 + 2X + 1 \in \mathbb{Q}[X]$ *Hint.* Exercise 2
 - (b) $X^4 + X + 1 \in \mathbb{F}_2[X]$
 - (c) $X^5 + \frac{5}{4}X^4 \frac{5}{21} \in \mathbb{Q}[X]$

Hint. Show that the polynomial has precisely three real roots and deduce that the Galois group contains a transposition and a 5-cycle.

(d) $X^{81} - t \in \mathbb{F}_3(t)[X]$