Prof. Rahul Pandharipande

Assignment 23

Solvability by Radicals. Recap.

1. Prove that the groups S_{2}, S_{3} and S_{4} are solvable.
2. Let k be a field and $n=2 d$ a positive even integer. Let $f=\sum_{j=0}^{n} a_{j} X^{j} \in k[X]$ be a monic polynomial of degree n without multiple roots and suppose that f has no root in k. Suppose moreover that f is palindromic, that is, $a_{j}=a_{n-j}$ for each $j \in\{0, \ldots, d\}$. Let E be the splitting field of f.
(a) Prove that $x \mapsto \frac{1}{x}$ is a well-defined bijection on the set of roots of f.
(b) Deduce that $\# \operatorname{Gal}(E / k)$ divides $2^{d} d$!.
3. For each of the following polynomials, determine the Galois group of its splitting field:
(a) $X^{4}+2 X^{3}+X^{2}+2 X+1 \in \mathbb{Q}[X] \quad$ Hint. Exercise 2
(b) $X^{4}+X+1 \in \mathbb{F}_{2}[X]$
(c) $X^{5}+\frac{5}{4} X^{4}-\frac{5}{21} \in \mathbb{Q}[X]$

Hint. Show that the polynomial has precisely three real roots and deduce that the Galois group contains a transposition and a 5 -cycle.
(d) $X^{81}-t \in \mathbb{F}_{3}(t)[X]$

