Algebra II

D-MATH Prof. Rahul Pandharipande

Assignment 26

Representations of finite groups

- 1. Show that the image of a one-dimensional representation of a finite group is a cyclic group.
- 2. Let *H* be a subgroup of index 2 of a group *G*, and let $\sigma: H \to \operatorname{GL}(V)$ be a representation. Let *a* be an element in $G \setminus H$. Define a *conjugate* representation ${}^{a}\sigma: H \to \operatorname{GL}(V)$ by the rule ${}^{a}\sigma(h) = \sigma(a^{-1}ha)$. Prove that
 - (a) The conjugate representation ${}^{a}\sigma$ is indeed a representation of H.
 - (b) If σ is the restriction to H of a representation of G, then ${}^{a}\sigma$ is isomorphic to σ .
 - (c) If b is another element of $G \smallsetminus H$, then the conjugate representation ${}^{b}\sigma$ is isomorphic to ${}^{a}\sigma$.
- 3. Let $\rho: G \to \operatorname{GL}(V)$ be a representation of a finite group on a real vector space V. Prove the following:
 - (a) There exists a G-invariant, positive definite, symmetric form \langle , \rangle on V.
 - (b) The representation ρ is a direct sum of irreducible representations.
- 4. Consider the representation ρ of \mathbb{Z} on \mathbb{C}^2 defined by $\rho(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - (a) Find a proper invariant subspace.
 - (b) Show that ρ is not a direct sum of irreducible representations.

A *character table* consists of rows corresponding to irreducible group representations, and columns corresponding to conjugacy classes of group elements. The entries are values of the character of the representation in a given row on the conjugacy class in a given column.

- 5. Determine the character table for the Klein four group.
- 6. Consider the dihedral group D_5 , and its cyclic subgroup C_5 .
 - (a) Determine the character table of D_5 and of C_5 .
 - (b) Decompose the restriction of each irreducible character of D_5 into irreducible characters of C_5 .
- 7. The quaternion group Q is the group $Q = \langle i, j, k \mid i^2 = j^2 = k^2 = -1, ijk = -1 \rangle$
 - (a) Find a subgroup of $GL_2(\mathbb{C})$ isomorphic to Q and determine the order of Q.
 - (b) Determine the conjugacy classes of Q.
 - (c) Show that any subgroup of Q is normal.
 - (d) Determine the character table of Q.

No hand-in. Enjoy your semester break!