Prof. Rahul Pandharipande

Assignment 26

Representations of finite groups

1. Show that the image of a one-dimensional representation of a finite group is a cyclic group.
2. Let H be a subgroup of index 2 of a group G, and let $\sigma: H \rightarrow \operatorname{GL}(V)$ be a representation. Let a be an element in $G \backslash H$. Define a conjugate representation ${ }^{a} \sigma: H \rightarrow \mathrm{GL}(V)$ by the rule ${ }^{a} \sigma(h)=\sigma\left(a^{-1} h a\right)$. Prove that
(a) The conjugate representation ${ }^{a} \sigma$ is indeed a representation of H.
(b) If σ is the restriction to H of a representation of G, then ${ }^{a} \sigma$ is isomorphic to σ.
(c) If b is another element of $G \backslash H$, then the conjugate representation ${ }^{b} \sigma$ is isomorphic to ${ }^{a} \sigma$.
3. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation of a finite group on a real vector space V. Prove the following:
(a) There exists a G-invariant, positive definite, symmetric form \langle,$\rangle on V$.
(b) The representation ρ is a direct sum of irreducible representations.
4. Consider the representation ρ of \mathbb{Z} on \mathbb{C}^{2} defined by $\rho(1)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(a) Find a proper invariant subspace.
(b) Show that ρ is not a direct sum of irreducible representations.

A character table consists of rows corresponding to irreducible group representations, and columns corresponding to conjugacy classes of group elements. The entries are values of the character of the representation in a given row on the conjugacy class in a given column.
5. Determine the character table for the Klein four group.
6. Consider the dihedral group D_{5}, and its cyclic subgroup C_{5}.
(a) Determine the character table of D_{5} and of C_{5}.
(b) Decompose the restriction of each irreducible character of D_{5} into irreducible characters of C_{5}.
7. The quaternion group Q is the group $Q=\left\langle i, j, k \mid i^{2}=j^{2}=k^{2}=-1, i j k=-1\right\rangle$
(a) Find a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ isomorphic to Q and determine the order of Q.
(b) Determine the conjugacy classes of Q.
(c) Show that any subgroup of Q is normal.
(d) Determine the character table of Q.

No hand-in. Enjoy your semester break!

