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Solution 15

Definition of automorphism group

1. Show that Aut(C/R) = {id, σ}, where σ is the complex conjugation.

Solution: The inclusion Aut(C/R) ⊃ {id, σ} is clear, since we already know that
the identity and the complex conjugation are automorphisms of C fixing the real
numbers.

Conversely, assume that ϕ ∈ Aut(C/R) is a field automorphism. Since ϕ is R-
linear by definition, it is uniquely determined by the images of 1 and i. Moreover,
since, since ϕ|R = id|R, we know that

ϕ(1) = 1 and ϕ(i)2 = ϕ(i2) = ϕ(−1) = −1 =⇒ ϕ(i) ∈ {±i}.

This implies that there are at most 2 elements in Aut(C/R), so that we can
conclude that Aut(C/R) = {id, σ}.

2. Determine Aut(F9/F3).

Solution: First note that, since #F9 = 9 = 32, the field F9 is a two dimensional
vector space over F3. On the other hand F9

∼= F3[X]/(X2 + 1) = F3(α) for some α
in an algebraic closure F̄3 with α2 = −1. So {1, α} is a basis of F9 over F3.

Recall also that by Assignment 13, Exercise 2 we have X2 + 1 = (X −α)(X −α3)
over F9.

Now let ϕ ∈ Aut(F9/F3) be a field automorphism. As in Exercise 1, ϕ is uniquely
determined by the images of 1 and α, and ϕ|F3 = idF3 ; hence ϕ(1) = 1 and

ϕ(α)2 = ϕ(α2) = ϕ(−1) = −1 =⇒ ϕ(α) ∈ {α, α3}

Thus, there are precisely two elements in Aut(F9/F3), namely id and the Frobenius
automorphism Frob3 : x 7→ x3 (since x3 = x for all x ∈ F3, we have Frob3 |F3 = idF3

and Frob3 is clearly a field automorphism of F9).

3. Determine all irreducible polynomials of degree 1, 2, 3, 4, 5 in F2[X].

Solution: Recall that, over an integral domain R, for two polynomials f, g ∈ R[X]
we know that deg(fg) = deg(f) deg(g). Moreover, R[X]× = R×, so that if R is
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also a field, then a polynomial f ∈ R[X] is irreducible if and only if it admits no
decomposition into two non-constant polynomials (e.g., this fails on R = Z, where
the polynomial 2X + 2 = 2(X + 1) is reducible because 2 is not a unit, although
it is constant).

• Because of the facts recalled above, all polynomials of degree 1 in F2[X] are
irreducible. Those are

X, X + 1.

• For polynomials of degree 2 and 3, being reducible is equivalent to have a
linear factor, because a decomposition of such a polynomial into the product
of two non-constant polynomials implies that one of the two has degree 1.
But having a linear factor is equivalent to having a root in F2. We see that
f ∈ F2[X] satisfies f(0) = 0 if and only if its constant term is 0 and f(1) = 0
if and only if the sum of the coefficients is 0, i.e., there are an even number
of non-zero coefficients. Hence, we look for polynomials of degree 2 and 3
satisfying neither of those two properties and conclude that the irreducible
polynomials in F2[X] of degree 2 and 3 are

X2 +X + 1, X3 +X2 + 1, X3 +X + 1.

• A polynomial f ∈ F2[X] of degree 4 is irreducible if and only if it has no
roots (i.e., no factor of degree 1) and it is not the product of two irreducible
polynomials of degree 2 (if one of the two degree-2 polynomials is reducible,
we fall again in the case where f has a linear factor). This means that we
look for all polynomials f ∈ F2[X] of degree 4 with constant term 1 and odd
number of non-zero coefficients and then remove from those the polynomial
(X2 +X+1)(X2 +X+1) = X4 +X2 +1. This way we obtain the irreducible
degree-4 polynomials

X4 +X3 + 1, X4 +X + 1, X4 +X3 +X2 +X + 1.

• A polynomial f ∈ F2[X] of degree 5 is irreducible if and only if it has no
roots (i.e., no factor of degree 1) and it is not the product of an irreducible
polynomials of degree 2 by an irreducible polynomial of degree 3 (if one of
those two polynomials is reducible, we fall again in the case where f has a
linear factor). Hence we look for all polynomials f ∈ F2[X] of degree 5 with
constant term 1 and odd number of non-zero coefficients and then remove
from those the polynomials (X2 + X + 1)(X3 + X2 + 1) = X5 + X + 1 and
(X2 +X+1)(X3 +X+1) = X5 +X4 +1. This way we obtain the irreducible
degree-5 polynomials

X5 +X4 +X3 +X2 + 1, X5 +X4 +X3 +X + 1, X5 +X4 +X2 +X + 1,

X5 +X3 +X2 +X + 1, X5 +X3 + 1, X5 +X2 + 1.
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4. (a) Show that X4 + 1 ∈ Q[X] is irreducible.

(b) Show that X4 + 1 is reducible in Fp[X] for every prime p.

Solution:

(a) The standard approach to prove that X4 + 1 is irreducible in Q is to first
notice that it has no rational roots (in this case, it is clear that it even has no
real roots) and then to suppose it is the product of two degree-2 polynomials
with rational coefficients, i.e, that there exist a, b, c, d ∈ Q such that

X4 + 1 = (X2 + aX + b)(X2 + bX + d) (1)

and get a contradiction by comparing coefficients.

In order to exclude this second possibility, we notice that a decomposition
as in Equation (??) would be a decomposition in C[X] as well. Denoting by
z1, . . . , z4 the four roots of X4 + 1 in C, the decomposition

X4 + 1 = (X − z1)(X − z2)(X − z3)(X − z4)

holds as well, so that, since C[X] is a UFD, for some distinct i and j we must
have (X − zi)(X − zj) = X2 + aX + b. Hence

X2 + aX + b = X2 − (zi + zj)X + zizj =⇒ zi + zj, zizj ∈ Q (2)

It is easy to compute that

{z1, z2, z3, z4} =

{
±
√

2

2
(1± i)

}
.

We see that zi + zj = 0 if zi and zj are opposites, while otherwise zi +
zj ∈ {±

√
2,±
√

2i} (drawing the four roots in the complex plane makes this
computations clear). Hence zi + zj ∈ Q implies that zi = −zj. But then

zizj = −1

2
(1± i)2 = −1

2
(1± i)2 = −(±i) 6∈ Q.

This contradicts (??), so that X4 + 1 is irreducible in Q[X].

(b) Now we move to Fp[X]. If p = 2, the polynomial X4 + 1 factors as X4 + 1 =
(X + 1)4. So from now on we suppose that p > 3.

Suppose that −1 is a square in Fp, that is, there exists ξ ∈ Fp such that
ξ2 = −1. Then

X4 + 1 = (X2 − ξ)(X2 + ξ)

so that the given polynomial is reducible and we are left to consider the case
in which p > 3 and −1 is not a square.
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We denote by F×2
p the subgroup of F×

p consisting of squares. It is the image of
the group homomorphism θ : F×

p → F×
p sending x 7→ x2. Since ker(θ) = {±1},

by the First Isomorphism Theorem we see that [F×
p : F×2

p ] = 2. By assump-
tion, −1 6∈ F×2

p so that F×
p = F×2

p t (−1)F×2
p . We look for a decomposition of

the form

X4 + 1 = (X2 + aX + b)(X2 − aX + b),

for some a, b ∈ Fp. This works if and only if 2b − a2 = 0 and b2 = 1.
Clearly this implies that a, b ∈ F×. More precisely, we obtain b = ±1 and we
need to find a ∈ F×

p such that a2 = 2b. This works because of the partition
F×
p = F×2

p t(−1)F×2
p , which tells us that either 2 or −2 is a square, so that we

can choose a to be the square root of one of the two and b ∈ {±1} accordingly.
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