Prof. Rahul Pandharipande

Solution 16

SEparability, computation of automorphism groups

1. Let $f \in k[X]$ and let $E \supset k$ be a splitting field of f. We want to prove that f has no multiple root in E if and only if $\operatorname{gcd}_{k[X]}\left(f, f^{\prime}\right)=1$.
(a) Let F / k be a field extension and $f, g \in k[X]$. Prove that $\operatorname{gcd}_{k[X]}(f, g)=1$ if and only if $\operatorname{gcd}_{F[X]}(f, g)=1$.
(b) Write $f=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$ in $E[X]$. Establish the formula

$$
\prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right)= \pm\left(\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)\right)^{2}
$$

(c) Use the above steps in order to conclude.

Solution:

(a) Recall that the gcd of two elements is unique up to association (i.e. multiplication by units). Hence, there is a unique monic gcd of two given polynomials with coefficients in a field. By Bezout's identity, a monic polynomial $t \in k[X]$ (or $F[X]$) is the gcd of f and g in $k[X]$ (or $F[X]$) if and only if there exist $p, q \in k[X]$ (or $F[X]$) such that $t=p f+q g$. Since $k[X] \subset F[X]$, we notice that $\operatorname{gcd}_{k[X]}(f, g)=\operatorname{gcd}_{E[X]}(f, g)$, from which it follows immediately that f, g are coprime in $k[X]$ if and only if they are coprime in $E[X]$.
(b) We can write $f=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$ in $E[X]$ by definition of splitting field. Recall the Leibniz rule of the derivation (Assignment 3, Exercise 5c):

$$
\forall p, q \in E[X],(p q)^{\prime}=p q^{\prime}+p^{\prime} q .
$$

Via induction we can generalize this to

$$
\forall i \in \mathbb{Z}_{\geqslant 1}: \forall p_{1}, \ldots, p_{r} \in E[X]:\left(p_{1} \cdots p_{r}\right)^{\prime}=\sum_{i=1}^{r}\left(p_{i}^{\prime} \prod_{\substack{j \neq i \\ j=1, \ldots, r}} p_{j}\right) .
$$

Applying this formula with $f=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$ we obtain

$$
f^{\prime}=\sum_{i=1}^{n}\left(1 \cdot \prod_{\substack{j \neq i \\ j=1, \ldots, n}}\left(X-\alpha_{j}\right)\right)
$$

Evaluating this derivative at α_{k}, all summands with $i \neq k$ vanish, because for $i \neq k$ the product contains the factor $\left(\alpha_{k}-\alpha_{k}\right)=0$. Hence

$$
f^{\prime}\left(\alpha_{k}\right)=\prod_{\substack{j \neq k \\ j=1, \ldots, n}}\left(\alpha_{k}-\alpha_{j}\right)
$$

which implies

$$
\begin{aligned}
\prod_{k=1}^{n} f^{\prime}\left(\alpha_{k}\right) & =\prod_{k=1}^{n} \prod_{\substack{\neq k \\
j=1, \ldots, n}}\left(\alpha_{k}-\alpha_{j}\right)=\prod_{k=1}^{n}\left(\prod_{\substack{j>k \\
j=1, \ldots, n}}\left(\alpha_{k}-\alpha_{j}\right) \prod_{\substack{j<k \\
j=1, \ldots, n}}(-1)\left(\alpha_{j}-\alpha_{k}\right)\right) \\
& =\prod_{j=1}^{n}\left(\prod_{\substack{k>j \\
k=1, \ldots, n}}\left(\alpha_{j}-\alpha_{k}\right)\right) \prod_{k=1}^{n}(-1)^{k-1}\left(\prod_{\substack{j<k \\
j=1, \ldots, n}}\left(\alpha_{j}-\alpha_{k}\right)\right) \\
& =(-1)^{\binom{n}{2}}\left(\prod_{1 \leqslant j<k \leqslant n}^{n}\left(\alpha_{k}-\alpha_{j}\right)\right)^{2} .
\end{aligned}
$$

(c) By part (a), f and f^{\prime} are coprime in $k[X]$ if and only if they are coprime in $E[X]$. Since $E[X]$ is a UFD and f factors into irreducible polynomials as $f=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$, it is coprime to f^{\prime} in $E[X]$ if and only if for each $i=1, \ldots, n$ the polynomial $X-\alpha_{i}$ does not divide f^{\prime}. This is equivalent to saying that none of the α_{i} is a root of f^{\prime}, which in turns means that $\prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right) \neq 0$. This last property is equivalent to the α_{i} being all distinct. Hence f and f^{\prime} are coprime if and only if f has no multiple roots.
2. Let p be a prime number and $\zeta:=e^{\frac{2 \pi i}{p}}$ a primitive p-th root of unity. Consider the polynomial $\varphi_{p}:=\frac{X^{p}-1}{X-1} \in \mathbb{Q}[X]$ with splitting field E.
(a) Prove that φ_{p} is irreducible in $\mathbb{Q}[X]$ and deduce that φ_{p} is the minimal polynomial of ζ over \mathbb{Q}.
(b) Show that $E=\mathbb{Q}(\zeta)$.
(c) Prove that $\operatorname{Aut}(E / \mathbb{Q})=(\mathbb{Z} / p \mathbb{Z})^{\times}$.

Solution:

(a) See Assignment 11, Exercise 4.
(b) A complex root x of $X^{p}-1$ must have absolute value equal to 1 (because $|x|^{p}=\left|x^{p}\right|=|1|=1$), hence it should be of the form $x=e^{\alpha i}$ for $\alpha \in \mathbb{R}$. Imposing $x^{p}=1$ we obtain $\alpha=2 \pi i \frac{k}{p}$ for some $k \in \mathbb{Z}$. Since $e^{2 \pi i}=1$, we can consider $k \in\{0,1, \ldots, p-1\}$. We see then that

$$
X^{p}-1=\prod_{k=0}^{p-1}\left(X-\zeta^{k}\right)
$$

so that

$$
\varphi_{p}=\prod_{k=1}^{p-1}\left(X-\zeta^{k}\right)
$$

Since $\mathbb{Q}(\zeta)$ contains all powers of ζ, we conclude that $E=\mathbb{Q}(\zeta)$.
(c) By part (b), an automorphism σ of E over \mathbb{Q} is uniquely determined by the image of ζ. Since $\operatorname{Aut}(E / \mathbb{Q})$ maps roots of φ_{p} to roots of φ_{p}, we know that $\sigma(\zeta) \in\left\{\zeta^{k}, k \in\{1,2, \ldots, p-1\}\right\}$ for all $\sigma \in \operatorname{Aut}(E / \mathbb{Q})$.
We define the map

$$
\begin{aligned}
\xi:(\mathbb{Z} / p \mathbb{Z})^{\times} & \longrightarrow \operatorname{Aut}(E / \mathbb{Q}) \\
k+p \mathbb{Z} & \longmapsto\left(\zeta \mapsto \zeta^{k}\right) .
\end{aligned}
$$

This map is well-defined because $\zeta^{\ell p}=1$ for each $\ell \in \mathbb{Z}$. In order to prove that it is a group homomorphism, recall that the multiplicative structure on $(\mathbb{Z} / p \mathbb{Z})$ is defined by $\left(k_{1}+p \mathbb{Z}\right) \cdot\left(k_{2}+p \mathbb{Z}\right):=k_{1} k_{2}+p \mathbb{Z}$ for $k_{1}, k_{2} \in \mathbb{Z}$. Then

$$
\xi\left(k_{1} k_{2}+p \mathbb{Z}\right)(\zeta)=\zeta^{k_{1} k_{2}},
$$

while

$$
\left(\xi\left(k_{1}+p \mathbb{Z}\right) \circ \xi\left(k_{2}+p \mathbb{Z}\right)\right)(\zeta)=\left(\xi\left(k_{1}+p \mathbb{Z}\right)\right)\left(\zeta^{k_{2}}\right) \stackrel{(*)}{=}\left(\zeta^{k_{1}}\right)^{k_{2}}=\zeta^{k_{1} k_{2}}
$$

where in the step $(*)$ we used the fact that $\xi\left(k_{1}+p \mathbb{Z}\right)$ is a field homomorphism sending $\zeta \mapsto \zeta^{k_{1}}$. This means that

$$
\xi\left(k_{1}+p \mathbb{Z}\right) \circ \xi\left(k_{2}+p \mathbb{Z}\right)=\xi\left(k_{1} k_{2}+p \mathbb{Z}\right)=\xi\left(\left(k_{1}+p \mathbb{Z}\right) \cdot\left(k_{2}+p \mathbb{Z}\right)\right),
$$

so ξ is a group homomorphism. It is surjective by the observations made at the beginning of this part. It is injective because $\forall k \in\{1, \ldots, p-1\}$:

$$
k+p \mathbb{Z} \in \operatorname{ker} \xi \Longleftrightarrow \xi(k+p \mathbb{Z})=\operatorname{id}_{E} \Longleftrightarrow \zeta^{k}=\zeta \Longleftrightarrow k=1
$$

Hence we have proven that $\operatorname{Aut}(E / \mathbb{Q})$ is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
3. Let $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(a) Prove that $[E: \mathbb{Q}]=4$.
(b) Show that $\operatorname{Aut}(E / \mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Solution:

(a) First we check that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$. Suppose that for $a, b \in \mathbb{Q}$ we have the equality $(a+b \sqrt{2})^{2}=3$. Then $a^{2}+2 b^{2}+2 a b \sqrt{2}=3$, which by \mathbb{Q}-linear independence of 1 and $\sqrt{2}$ implies that $a b=0$. If $a=0$, then $2 b^{2}=3$, while if $b=0$, then $a^{2}=3$. Both possibilities yield a contradiction. Hence $E / \mathbb{Q}(\sqrt{2})$ is not a trivial extension. Since it is generated by the element $\sqrt{3}$, which is a root of $X^{2}-3 \in \mathbb{Q}(\sqrt{2})[X]$, we see that $[E: \mathbb{Q}(\sqrt{2})]=2$. Then by multiplicativity of the degree in towers, we obtain

$$
[E: \mathbb{Q}]=[E: \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2 \cdot 2=4 .
$$

(b) Since E is the splitting field of the separable irreducible polynomial $X^{2}-3$ in $\mathbb{Q}(\sqrt{2})[X]$, we know that $2 \mid \operatorname{Aut}(E / \mathbb{Q}(\sqrt{2}))$. Note that an automorphism $\sigma \in \operatorname{Aut}(E / \mathbb{Q}(\sqrt{2}))$ is uniquely determined by the image of $\sqrt{3}$, which must be either $\sqrt{3}$ or $-\sqrt{3}$. Hence $\operatorname{Aut}(E / \mathbb{Q}(\sqrt{2}))$ contains precisely 2 elements: the identity id and $\sigma_{3}: \sqrt{3} \mapsto-\sqrt{3}$ (which sends $\sqrt{2} \mapsto \sqrt{2}$ by definition of $\operatorname{Aut}(E / \mathbb{Q}(\sqrt{2})))$.
Similarly, one sees that $\operatorname{Aut}(E / \mathbb{Q}(\sqrt{3}))=\left\{\right.$ id, $\left.\sigma_{2}\right\}$ where σ_{2} maps $\sqrt{2} \mapsto-\sqrt{2}$ (and $\sqrt{3} \mapsto \sqrt{3}$).
The automorphisms of E mentioned above are all also elements of $\operatorname{Aut}(E / \mathbb{Q})$, which contains the 4 distinct automorphisms id, $\sigma_{2}, \sigma_{3}, \sigma_{2} \circ \sigma_{3}$. On the other hand, $\sigma \in \operatorname{Aut}(E / \mathbb{Q})$ is uniquely determined by the images of $\sqrt{2}$ and $\sqrt{3}$, and since both can be mapped to precisely two values, we have at most 4 possibilities. Hence $\operatorname{Aut}(E / \mathbb{Q})=\left\{\operatorname{id}, \sigma_{2}, \sigma_{3}, \sigma_{2} \circ \sigma_{3}\right\}$. The only two groups up to isomorphism containing 4 elements are $\mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Note that σ_{2} and σ_{3} have order 2 (because if we perform σ_{j} twice, both $\sqrt{2}$ and $\sqrt{3}$ are mapped to themselves), while $\mathbb{Z} / 4 \mathbb{Z}$ contains only one element of order 2 . Hence

$$
\operatorname{Aut}(E / \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

4. Show that the Galois group of $X^{3}-2 \in \mathbb{Q}[X]$ is isomorphic to S_{3}.

Hint: Let E be the splitting field of $X^{3}-2$. Find the roots of $X^{3}-2$ in \mathbb{C}. Consider the intermediate extension $\mathbb{Q}(\exp (2 \pi i / 3)) / \mathbb{Q}$ of E and show that $[E: \mathbb{Q}]>3$.

Solution: Recall that $\operatorname{Aut}(E / \mathbb{Q})$ can be seen as a subgroup of S_{3} by considering its actions on the roots of $X^{3}-2$. Hence, in order to prove that $\operatorname{Aut}(E / \mathbb{Q}) \cong S_{3}$, it is enough to check that $|\operatorname{Aut}(E / \mathbb{Q})| \geqslant 6$. The roots of $X^{3}-2$ in \mathbb{C} are

$$
\sqrt[3]{2}, \sqrt[3]{2} \zeta, \sqrt[3]{2} \zeta^{2}
$$

where $\zeta=e^{\frac{2 \pi i}{3}}$. Hence $E=\mathbb{Q}\left(\sqrt[3]{2}, \sqrt[3]{2} \zeta, \sqrt[3]{2} \zeta^{2}\right)=\mathbb{Q}(\sqrt[3]{2}, \zeta)$. It contains the intermediate extensions $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ and $\mathbb{Q}(\zeta) / \mathbb{Q}$ which have degree 3 and 2 respectively since $X^{3}-2$ and $X^{2}+X+1$ are their respective minimal polynomials over \mathbb{Q} ($X^{3}-2 \in \mathbb{Q}[X]$ is irreducible by Eisenstein's criterion, $X^{2}+X+1 \in \mathbb{Q}[X]$ is
irreducible by Exercise 2). Hence, by multiplicativity of the degree, both 2 and 3 are divisors of $[E: \mathbb{Q}]$. Moreover $[E: \mathbb{Q}(\sqrt[3]{2})] \leqslant 2$ because $\zeta^{2}+\zeta+1=0$. Then

$$
6 \leqslant[E: \mathbb{Q}]=[E: \mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}] \leqslant 2 \cdot 3=6
$$

so that $[E: \mathbb{Q}]=6$. Then, again by multiplicativity of the degree, we see that

$$
[E: \mathbb{Q}(\sqrt[3]{2})]=2 \text { and }[E: \mathbb{Q}(\zeta)]=3
$$

From the lecture we thus know that 2 divides $|\operatorname{Aut}(E / \mathbb{Q}(\sqrt[3]{2}))|$ and 3 divides $|\operatorname{Aut}(E / \mathbb{Q}(\zeta))|$. Since these two automorphism groups are subgroups of $\operatorname{Aut}(E / \mathbb{Q})$, we deduce that 6 divides $|\operatorname{Aut}(E / \mathbb{Q})|$. By the initial observation, we can conclude that $\operatorname{Aut}(E / \mathbb{Q}) \cong S_{3}$.

