Solution 17

FIXED SUBFIELD

- 1. Let E/k be a splitting field of $X^n 1 \in k[X]$ and $\Gamma_n(E)$ the subgroup of E^{\times} of *n*-th roots of unity. Show that
 - (a) If char(k) = 0, then $|\Gamma_n(E)| = n$.
 - (b) If char(k) = p, and $n = p^{\ell}m$ with $p \nmid m$, then $|\Gamma_n(E)| = m$.

Solution: Let $f = X^n - 1$.

- (a) Suppose that $\operatorname{char}(k) = 0$. Then $f' = nX^{n-1} \neq 0$ so that each irreducible factor of f' is X (up to a multiplicative constant in k^{\times}). But $X \nmid f$, so that $\operatorname{gcd}(f, f') = 1$ and f has no multiple roots. Since all roots of f are in E, $|\Gamma_n(E)| = n$.
- (b) Suppose that $\operatorname{char}(k) = p$ and write $n = p^{\ell}m$ with $p \nmid m$. Notice that, since $\operatorname{char}(k) = p$,

$$(X^m - 1)^p = X^{mp} - 1$$

and iterating this process we obtain

$$(X^m - 1)^{p^{\ell}} = X^{mp^{\ell}} - 1 = X^n - 1.$$

Then $f = g^{p^{\ell}}$ for $g = X^m - 1$ and the roots of f coincide with the roots of g. Now, we see that $g' = mX^{m-1} \neq 0$ and the same reasoning done in part (a) tells us that gcd(g,g') = 1, so that $|\Gamma_n(E)| = |R(g)| = m$.

2. Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Recall that $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. List all subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))$ and for each subgroup H determine the subfield E^H .

Solution: By Assignment 16, Exercise 3, the Galois groups of $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ consists of the four elements $\mathrm{id}, \sigma_2, \sigma_3, \sigma_2 \circ \sigma_3$ where σ_2 maps $\sqrt{2} \mapsto \sqrt{2}$ and $\sqrt{3} \mapsto -\sqrt{3}$, while σ_3 maps $\sqrt{2} \mapsto \sqrt{2}$ and $\sqrt{3} \mapsto -\sqrt{3}$. Notice that $\sqrt{6} = \sqrt{2} \cdot \sqrt{3}$, so that it changes sign under the action of σ_2 and σ_3 and it is fixed by $\sigma_2 \circ \sigma_3$.

The subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ are given by $\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ itself, $\langle \sigma_2 \rangle$, $\langle \sigma_3 \rangle$, $\langle \sigma_2 \circ \sigma_3 \rangle$ and {id}.

A Q-basis of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ is seen to be given by $1,\sqrt{2},\sqrt{3},\sqrt{6}$. Hence, writing a general element $x \in \mathbb{Q}(\sqrt{2},\sqrt{3})$ as $x = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$, we can see when it is fixed by an element of the Galois group:

- id fixes all $x \in \mathbb{Q}(\sqrt{2}, \sqrt{3});$
- $\sigma_2(x) = \sigma_2(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) = a b\sqrt{2} + c\sqrt{3} d\sqrt{6} \stackrel{!}{=} x$ if and only if b = d = 0, that is, $x \in \mathbb{Q}(\sqrt{3})$;
- $\sigma_3(x) = a + b\sqrt{2} c\sqrt{3} d\sqrt{6} \stackrel{!}{=} x$ if and only if c = d = 0, that is, $x \in \mathbb{Q}(\sqrt{2})$;
- $\sigma_2 \circ \sigma_3(x) = a b\sqrt{2} c\sqrt{3} + d\sqrt{6} \stackrel{!}{=} x$ if and only if b = c = 0, that is, $x \in \mathbb{Q}(\sqrt{6})$.

Putting all this together, we see that

- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\mathrm{id}} = \mathrm{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3});$
- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\langle \sigma_2 \rangle} = \mathbb{Q}(\sqrt{3});$
- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\langle\sigma_3\rangle} = \mathbb{Q}(\sqrt{2});$
- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\langle \sigma_2 \circ \sigma_3 \rangle} = \mathbb{Q}(\sqrt{6}).$
- $\mathbb{Q}(\sqrt{2},\sqrt{3})^{\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})} = \mathbb{Q}.$
- 3. Let p be a prime number and let $m \ge 1$. Prove that the field extension $\mathbb{F}_{p^m}/\mathbb{F}_p$ is Galois and calculate its Galois group.

Hint. Frobenius automorphism.

Solution: Set $q := p^m$. Recall that the Frobenius map $\operatorname{Frob}_p \colon \mathbb{F}_q \to \mathbb{F}_q, x \mapsto x^p$ is an \mathbb{F}_p -linear endomorphism. If $x^p = y^p$, then $0 = x^p - y^p = (x - y)^p$, hence x = y, so Frob_p is injective. Since it is an injective linear map from a finite-dimensional vector space to itself, it is surjective, so it is an automorphism. Its fixed field is the subfield of roots of $x^p - x$, which are precisely the p distinct elements of the base field \mathbb{F}_p . Its order in $\operatorname{Aut}(\mathbb{F}_q/\mathbb{F}_p)$ is precisely m, since $x^{p^r} = x$ is true for all $x \in \mathbb{F}_q$ if and only if $r \ge m$. From the lecture we know that

$$[\mathbb{F}_q/\mathbb{F}_p] \ge |\{\operatorname{Frob}_p, \operatorname{Frob}_{p^2} = \operatorname{Frob}_p \circ \operatorname{Frob}_p, \dots, \operatorname{Frob}_{p^{m-1}}, \operatorname{Frob}_{p^m} = \operatorname{id}_{\mathbb{F}_{p^m}}\}| = m.$$

On the other hand, we have $[\mathbb{F}_q/\mathbb{F}_p] = m$ because $q = p^m$. It follows that \mathbb{F}_q is Galois with Galois group the cyclic group generated by Frob_p .