Prof. Rahul Pandharipande

Solution 18

Radical extensions, Transitive group actions

1. Let $f=X^{3}+p X+q \in \mathbb{Q}[X]$ be an irreducible polynomial. Let $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ be the roots of f and E its splitting field.
(a) Define the discriminant of f as

$$
D(f):=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2}
$$

Prove that $D(f)=-4 p^{3}-27 q^{2} \neq 0$.
Hint: $f=\left(X-z_{1}\right)\left(X-z_{2}\right)\left(X-z_{3}\right)$
(b) Check that E contains the square roots of $D(f)$.
(c) Suppose that $D(f)$ is not a square in \mathbb{Q}. Show that $\operatorname{Gal}(E / \mathbb{Q})=S_{3}$.
(d) Suppose that $D(f)$ is a square in \mathbb{Q}. Show that there exists no automorphism $\sigma \in \operatorname{Gal}(E / \mathbb{Q})$ switching z_{1} and z_{2} and deduce that $\operatorname{Gal}(E / \mathbb{Q})=A_{3}$.
(e) Prove that the roots of f are all real if and only if $D(f)>0$. Else, f has one real root and two non-real conjugated roots.

Solution:

(a) Since \mathbb{Q} has characteristic zero and f is irreducible, we know that f is separable. Hence $z_{1} \neq z_{2} \neq z_{3} \neq z_{1}$, so that $D(f) \neq 0$ by definition.
Following the hint, we notice that $z_{1} z_{2} z_{3}=-q, z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}=p$ and $z_{1}+z_{2}+z_{3}=0$. Hence

$$
\begin{aligned}
D(f) & =\left(z_{1}-z_{2}\right)^{2}\left(z_{1}-z_{3}\right)^{2}\left(z_{2}-z_{3}\right)^{2} \\
& =\left(z_{1}^{2}+z_{2}^{2}-2 z_{1} z_{2}\right)\left(z_{1}^{2}+z_{3}^{2}-2 z_{1} z_{3}\right)\left(z_{2}^{2}+z_{3}^{2}-2 z_{2} z_{3}\right) \\
& =\sum_{i \neq j} z_{i}^{4} z_{j}^{2}+2 z_{1}^{2} z_{2}^{2} z_{3}^{2}-2 \sum_{i<j} z_{i}^{3} z_{j}^{3}-2 z_{1} z_{2} z_{3}\left(\sum_{i \neq j} z_{i}^{2} z_{j}+\sum_{i=1}^{3} z_{i}^{3}\right) \\
& +4 z_{1} z_{2} z_{3} \sum_{i \neq j} z_{i}^{2} z_{j}-8 z_{1}^{2} z_{2}^{2} z_{3}^{2} \\
& =\sum_{i \neq j} z_{i}^{4} z_{j}^{2}-2 \sum_{i<j} z_{i}^{3} z_{j}^{3}-2 q\left(\sum_{i \neq j} z_{i}^{2} z_{j}-\sum_{i=1}^{3} z_{i}^{3}\right)-6 q^{2} .
\end{aligned}
$$

We now construct symmetric expressions of z_{1}, z_{2}, z_{3} out of $z_{1}+z_{2}+z_{3}$, $z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}$ and $z_{1} z_{2} z_{3}$ in order to rewrite the above expression in terms of p and q. First, notice that $z_{1}+z_{2}+z_{3}=0$ implies that

$$
\begin{aligned}
& 0=\sum_{i=1}^{3} z_{i}^{2} \sum_{j=1}^{3} z_{j}=\sum_{i \neq j} z_{i}^{2} z_{j}+\sum z_{i}^{3} \\
& 0=\left(\sum_{i=1}^{3} z_{i}\right)^{3}=\sum_{i=1}^{3} z_{i}^{3}+3 \sum_{i \neq j} z_{i}^{2} z_{j}+6 z_{1} z_{2} z_{3}
\end{aligned}
$$

from which we obtain, using $z_{1} z_{2} z_{3}=-q$,

$$
\sum_{i \neq j} z_{i}^{2} z_{j}=3 q \text { and } \sum_{i=1}^{3} z_{i}^{3}=-3 q .
$$

Moreover, we compute

$$
\begin{aligned}
& \sum_{i=1}^{3} z_{i}^{2}+2 p=\left(\sum_{i=1}^{3} z_{i}\right)^{2}=0 \Longrightarrow \sum_{i=1}^{3} z_{i}^{2}=-2 p, \\
& p^{2}=\left(\sum_{i<j} z_{i} z_{j}\right)^{2}=\sum_{i<j} z_{i}^{2} z_{j}^{2}+2 z_{1} z_{2} z_{3} \sum_{i=1}^{3} z_{i}=\sum_{i<j} z_{i}^{2} z_{j}^{2} .
\end{aligned}
$$

Then

$$
-2 p^{3}=\sum_{k=1}^{3} z_{k}^{2} \cdot \sum_{i<j} z_{i}^{2} z_{j}^{2}=3 z_{1}^{2} z_{2}^{2} z_{3}^{2}+\sum_{i \neq j} z_{i}^{4} z_{j}^{2} \Longrightarrow \sum_{i \neq j} z_{i}^{4} z_{j}^{2}=-2 p^{3}-3 q^{2}
$$

Also,

$$
4 p^{2}=\sum_{i=1}^{3} z_{i}^{2} \cdot \sum_{j=1}^{3} z_{j}^{2}=\sum_{i=1}^{3} z_{i}^{4}+2 \sum_{i<j} z_{i}^{2} z_{j}^{2} \Longrightarrow \sum_{i=1}^{3} z_{i}^{4}=2 p^{2}
$$

which lets us compute

$$
-4 p^{3}=\sum_{i=1}^{3} z_{i}^{2} \cdot \sum_{j=1}^{3} z_{j}^{4}=\sum_{i=1}^{3} z_{i}^{6}+\sum_{i<j} z_{i}^{2} z_{j}^{4} \Longrightarrow \sum_{i=1}^{3} z_{i}^{6}=-2 p^{3}+3 q^{2}
$$

from which we obtain the remaining expression appearing $D(f)$ via

$$
9 q^{2}=\sum_{i=1}^{3} z_{i}^{3} \sum_{j=1}^{3} z_{j}^{3}=\sum_{i=1}^{3} z_{i}^{6}+2 \sum_{i<j} z_{i}^{3} z_{j}^{3} \Longrightarrow \sum_{i<j} z_{i}^{3} z_{j}^{3}=3 q^{2}+p^{3}
$$

Substituting all the above expression in the initial formula for $D(f)$, we get

$$
D(f)=-2 p^{3}-3 q^{2}-2\left(3 q^{2}+p^{3}\right)-2 q \cdot 6 q-6 q^{2}=-4 p^{3}-27 q^{2} .
$$

(b) Recall that E is taken to be the splitting field of f in \mathbb{C}. The roots of $D(f)$ in \mathbb{C} are then given by $\pm\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right)\left(z_{2}-z_{3}\right)$ which are elements of E since $z_{1}, z_{2}, z_{3} \in E$.
(c) By the previous point, $E \supset \mathbb{Q}\left(z_{1}, \Delta(f)\right)$, where $\Delta(f)=\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right)\left(z_{2}-\right.$ $\left.z_{3}\right)$ is a square root of $D(f)$. Hence $[E: \mathbb{Q}]$ is divisible by both $\left[\mathbb{Q}\left(z_{1}\right): \mathbb{Q}\right]$ and $[\mathbb{Q}(\Delta(f)): \mathbb{Q}]$. We know that $\left[\mathbb{Q}\left(z_{1}\right): \mathbb{Q}\right]=\operatorname{deg}(f)=3$, while $[\mathbb{Q}(\Delta(f))$: $\mathbb{Q}]=2$ because $\Delta(f)^{2}=D(f) \in \mathbb{Q}$ and $\Delta(f) \notin \mathbb{Q}$ by assumption. Hence $6 \mid[E: \mathbb{Q}]$. Since $[E: \mathbb{Q}]$ is also the cardinality of $\operatorname{Gal}(E / \mathbb{Q})$ which is a subgroup of S_{3} (by looking at its action on the roots of f), we can conclude that $\operatorname{Gal}(E / \mathbb{Q}) \cong S_{3}$.
(d) Suppose $\sigma \in \operatorname{Gal}(E / \mathbb{Q})$ switches z_{1} and z_{2}. Then it must fix z_{3}. We obtain $\sigma(\Delta(f))=\sigma\left(\left(z_{1}-z_{2}\right)\left(z_{1}-z_{3}\right)\left(z_{2}-z_{3}\right)\right)=\left(z_{2}-z_{1}\right)\left(z_{2}-z_{3}\right)\left(z_{1}-z_{3}\right)=-\Delta(f)$, so that $\Delta(f) \notin \mathbb{Q}$ by definition of $\operatorname{Gal}(E / \mathbb{Q})$. Hence no such a σ can exist if $D(f)$ is a square in \mathbb{Q} (because then we know that $\Delta(f) \in \mathbb{Q}$). Still $3=\left[\mathbb{Q}\left(z_{1}\right): \mathbb{Q}\right]$ divides $[E: \mathbb{Q}]=|\operatorname{Gal}(E / \mathbb{Q})|$ and since $\operatorname{Gal}(E / \mathbb{Q})$ can be seen as a proper subgroup of S_{3} (not containing transpositions), the only possibility is that $\operatorname{Gal}(E / \mathbb{Q}) \cong A_{3}$.
(e) By the mean value theorem we know that f has a root in \mathbb{R}. If it has a non-real root, then the complex conjugate of this root must also be a root, since the coefficients of f are in \mathbb{Q} and hence real, so that they are fixed by complex conjugation. Moreover, we know that f has three distinct roots as proved in a), so that the only two possibilities are that f has three real roots or a real root and two conjugated non-real roots. Without loss of generality, assume that $z_{1} \in \mathbb{R}$. We distinguished the cases treated in parts c) and d) above to check the given statement.

- Suppose that $D(f)$ is a square in \mathbb{Q} (so that in particular, $D(f)>0$). Then $E=\mathbb{Q}\left(z_{1}\right)$ because $[E: \mathbb{Q}]=3$ by part d). Hence $E \subset \mathbb{R}$, so that all roots of f are real.
- Suppose that $D(f)$ is not a square in \mathbb{Q}. The argument used in c) shows that $\mathbb{Q}\left(z_{1}, \Delta(f)\right)$ has degree 6 over \mathbb{Q}, so that $E=\mathbb{Q}\left(z_{1}, \Delta(f)\right)$. The roots of f are all real if and only if $E \subset \mathbb{R}$, which is then equivalent to $\Delta(f) \in \mathbb{R}$, which happens if and only if $D(f)>0$.

2. (Artin-Schreier extension) Let k be a field of characteristic 2 and K / k a quadratic extension such that $|\operatorname{Gal}(K / k)|=2$. Show that there exist $\beta \in K$ and $a \in k$ such that β is a root of $X^{2}-X+a \in k[X]$ and $K=k(\beta)$.
Solution: Let $b_{0} \in K \backslash k$ and consider its minimal polynomial $f=X^{2}+s X+t$ over k. Then $K=k\left(b_{0}\right)$.
Suppose that $s=0$. Then $b_{0}^{2}=t$ so that $\left(X-b_{0}\right)^{2}=X^{2}+b_{0}^{2}=X^{2}+t$ and the Galois group can map b_{0} only to itself, so that $|\operatorname{Gal}(K / k)|=1$, contradicting our assumptions. Hence $s \neq 0$.

We look for $b=\lambda b_{0}+\mu \in K \backslash k$ with $\lambda, \mu \in k$ such that $b^{2}-b+a=0$ for some $a \in k$, that is, such that $b^{2}-b \in k$. We compute
$b^{2}-b=\left(\lambda b_{0}+\mu\right)^{2}-\left(\lambda b_{0}+\mu\right)=\lambda^{2} b_{0}^{2}+\lambda b_{0}+\mu^{2}-\mu=\lambda^{2}\left(s b_{0}+t\right)+\lambda b_{0}+\mu^{2}-\mu$
and notice that the last quantity belongs to k if and only if $\lambda(\lambda s+1)=0$. Since $b \notin k$, we necessarily have $\lambda \neq 0$, so that we need $\lambda=1 / s$. This implies that $b:=b_{0} / s$ has minimal polynomial $X^{2}-X+t / s^{2}$ and generated K / k, as desired.
3. Let G be a group acting on a set X with at least two elements. We say that the action is doubly transitive if for each $x_{1}, x_{2}, y_{1}, y_{2} \in X$ with $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$ there exists $g \in G$ such that $g \cdot x_{i}=y_{i}$ for $i=1,2$. Show that the following statements are true:
(a) S_{n} acts doubly transitively on $\{1, \ldots, n\}$ for each $n \geqslant 2$.
(b) A_{n} acts doubly transitively on $\{1, \ldots, n\}$ for each $n \geqslant 4$.
(c) For each $n \geqslant 4$ the group D_{n} does not act doubly transitively on the vertices of an n-gon (see Assignment 8, Exercise 7).

Solution:

(a) As proved in Assignment 9, Exercise 8, the action of S_{n} on $\{1, \ldots, n\} \times$ $\{1, \ldots, n\}$ has only two orbits: $\{(i, i)\}$ and $\{(i, j): i \neq j\}$. This means that each (i, j) can be mapped to each $\left(i^{\prime}, j^{\prime}\right)$ for $i \neq j$ and $i^{\prime} \neq j^{\prime}$ by a permutation in S_{n}, that is, the action of S_{n} on $\{1, \ldots, n\}$ is doubly transitive.
(b) Let $x_{1}, x_{2}, y_{1}, y_{2} \in\{1, \ldots, n\}$ with $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$. We reason on different cases distinguished by the cardinality of $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, which ranges from 2 to 4 and find $\sigma \in A_{n}$ sending $x_{i} \mapsto y_{i}$. Recall that a 3 -cycle is a product of two 2 -cycles and as such it belongs to A_{n}.

- Suppose that $\left|\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right|=2$, so that $\left\{x_{1}, x_{2}\right\}=\left\{y_{1}, y_{2}\right\}$. If both $x_{i}=y_{i}$, then $\sigma=\mathrm{id} \in A_{n}$ does the job. Else, $x_{1}=y_{2}$ and $x_{2}=y_{1}$. In this second subcase $n \geqslant 4$, we can take $u, v \in\{1, \ldots, n\} \backslash\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ with $u \neq v$ and choose $\sigma=(u v)\left(x_{1} y_{1}\right)=(u v)\left(x_{2} y_{2}\right)$.
- Suppose that $\left|\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right|=3$. Without loss of generality, we can assume that either $x_{1}=y_{1}$ or $x_{1}=y_{2}$. In the first subcase, we want to map $x_{1} \mapsto x_{1}$ and $x_{2} \mapsto y_{2}$ and we know that $x_{2} \neq y_{2}$. This can be done by taking $u \in\{1, \ldots, n\} \backslash\left\{x_{1}, x_{2}, y_{2}\right\}$ and choosing $\sigma=\left(x_{2} y_{2} u\right) \in A_{n}$. In the second subcase, we want to map $x_{1} \mapsto y_{1}$ and $x_{2} \mapsto x_{1}$, which can be done via $\sigma=\left(x_{2} x_{1} y_{1}\right) \in A_{n}$.
- Suppose that $\left|\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right|=4$. Then $\sigma=\left(\begin{array}{ll}x_{1} & y_{1}\end{array}\right)\left(x_{2} y_{2}\right) \in A_{n}$ does the job.
(c) Recall that D_{n} consists of n rotations (including the identity) and n axial symmetries (reflections). Suppose that $\sigma \in D_{n}$ fixes one vertex P. Then σ is either the identity or the reflection through the axis passing through P. Hence, for a given $P^{\prime} \neq P, \sigma\left(P^{\prime}\right)$ has only two possible images, one of which is P^{\prime} itself, the other is another vertex $P^{\prime \prime}$. Since $n \geqslant 4$, we can take $P^{\prime \prime \prime}$, a vertex different from P, P^{\prime} and $P^{\prime \prime}$ and see that there exist no $\sigma \in D_{n}$ mapping $P \mapsto P$ and $P^{\prime} \mapsto P^{\prime \prime \prime}$, so that the action is not doubly transitive.

