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Solution 18

RADICAL EXTENSIONS, TRANSITIVE GROUP ACTIONS

1. Let f = X?® + pX + ¢ € Q[X] be an irreducible polynomial. Let 21, 25, z3 € C be
the roots of f and FE its splitting field.

(a) Define the discriminant of f as

i<j
Prove that D(f) = —4p® — 27¢* # 0.
Hint: f=(X —21)(X — 29)(X — 2z3)
(b) Check that E contains the square roots of D(f).
(c) Suppose that D(f) is not a square in Q. Show that Gal(E/Q) = S.

(d) Suppose that D(f) is a square in Q. Show that there exists no automorphism
o € Gal(F/Q) switching z; and 25 and deduce that Gal(E/Q) = As.

(e) Prove that the roots of f are all real if and only if D(f) > 0. Else, f has one
real root and two non-real conjugated roots.

Solution:

(a) Since Q has characteristic zero and f is irreducible, we know that f is sepa-

rable. Hence z; # 29 # 23 # 21, so that D(f) # 0 by definition.
Following the hint, we notice that zy2023 = —q, 2122 + 2123 + 2223 = p and
z1 + 2z + 23 = 0. Hence

D(f) = (21— 22)*(21 — 23)*(22 — 23)°
= (27 + 25 — 22129) (27 + 25 — 22123) (25 + 25 — 22923)
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We now construct symmetric expressions of zi, 20,23 out of z; + z9 + 23,
2129+ 2123+ 2023 and 212023 in order to rewrite the above expression in terms
of p and ¢q. First, notice that z; + 25 + 23 = 0 implies that
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from which we obtain, using 212923 = —q,
3
Z 27z; = 3q and sz’ = —3q.
i#j i=1

Moreover, we compute

3

3
P’ = (Z Zizj) Z + 2212923 Z Zi = Z 21222.

1<J 1<J 1<j
Then
—2p° = Z Zj; - Z z; zj = 321228 + Zz4z2 — Z 2142]2 = —2p° — 3¢
i<y i#] i#]
Also,
3 3 3
4p* = sz ZZJQ = Zz —|—2222z2 - sz = 2p%,
1<j =1

which lets us compute
3 3
S S S M E e
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from which we obtain the remaining expression appearing D(f) via
= ZZ?ZZJ?) sz —1—222325’ - sz’zjg’ = 3¢° +p°.
i=1 j=1 i=1 1<J 1<J
Substituting all the above expression in the initial formula for D(f), we get

D(f) = —2p* — 3¢ — 2(3¢° + p*) — 2q - 6 — 6¢° = —4p® — 274"
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(b) Recall that E' is taken to be the splitting field of f in C. The roots of D(f)
in C are then given by (21 — 29)(21 — 23)(22 — 23) which are elements of E
since 21, 29,23 € F.

(c) By the previous point, E D Q(z1, A(f)), where A(f) = (21— 22) (21— 23) (22—
z3) is a square root of D(f). Hence [E : Q] is divisible by both [Q(z1) : Q]
and [Q(A(f)) : Q]. We know that [Q(z1) : Q] = deg(f) = 3, while [Q(A(f)) :
Q] = 2 because A(f)? = D(f) € Q and A(f) € Q by assumption. Hence
6|[£ : Q]. Since [E : Q] is also the cardinality of Gal(E/Q) which is a
subgroup of S5 (by looking at its action on the roots of f), we can conclude
that Gal(F/Q) = S.

(d) Suppose o € Gal(E/Q) switches z; and z. Then it must fix z3. We obtain

o(A(f)) = o((z1 — 22) (21 — 23)(22 — 23)) = (22 — 21)(22 — 23) (21 — 23) = —A(f),

so that A(f) & Q by definition of Gal(F/Q). Hence no such a o can exist
if D(f) is a square in Q (because then we know that A(f) € Q). Still
3 =1[Q(z) : Q] divides [F : Q] = |Gal(E/Q)| and since Gal(F/Q) can be
seen as a proper subgroup of S3 (not containing transpositions), the only
possibility is that Gal(E/Q) = As.

(e) By the mean value theorem we know that f has a root in R. If it has a
non-real root, then the complex conjugate of this root must also be a root,
since the coefficients of f are in Q and hence real, so that they are fixed by
complex conjugation. Moreover, we know that f has three distinct roots as
proved in a), so that the only two possibilities are that f has three real roots
or a real root and two conjugated non-real roots. Without loss of generality,
assume that z; € R. We distinguished the cases treated in parts ¢) and d)
above to check the given statement.

e Suppose that D(f) is a square in Q (so that in particular, D(f) > 0).
Then E = Q(z;) because [E : Q] = 3 by part d). Hence £ C R, so that
all roots of f are real.

e Suppose that D(f) is not a square in Q. The argument used in ¢) shows
that Q(z1, A(f)) has degree 6 over Q, so that £ = Q(z1,A(f)). The
roots of f are all real if and only if £ C R, which is then equivalent to
A(f) € R, which happens if and only if D(f) > 0.

2. (Artin-Schreier extension) Let k be a field of characteristic 2 and K/k a quadratic
extension such that |Gal(K/k)| = 2. Show that there exist § € K and a € k such
that § is a root of X? — X +a € k[X] and K = k().

Solution: Let by € K ~ k and consider its minimal polynomial f = X2 + sX +¢
over k. Then K = k(b).

Suppose that s = 0. Then b% = ¢ so that (X —by)? = X2 + b2 = X% + ¢ and the
Galois group can map by only to itself, so that |Gal(K/k)| = 1, contradicting our
assumptions. Hence s # 0.



We look for b = \bg + 1 € K ~\ k with \, u € k such that b?> — b+ a = 0 for some
a € k, that is, such that b*> — b € k. We compute

b — b= (Abp + p1)? — (\bo + ) = A?B2 + by + p? — p = N (sbg + 1) + by + p> — p

and notice that the last quantity belongs to k if and only if A(As + 1) = 0. Since
b & k, we necessarily have A # 0, so that we need A = 1/s. This implies that
b := by/s has minimal polynomial X? — X + t/s* and generated K/k, as desired.

. Let G be a group acting on a set X with at least two elements. We say that the
action is doubly transitive if for each zq,x9,y1,y2 € X with x1 # x5 and y; # yo
there exists ¢ € G such that g - x; = y; for ¢ = 1,2. Show that the following
statements are true:

(a) S, acts doubly transitively on {1,...,n} for each n > 2.
(b) A, acts doubly transitively on {1,...,n} for each n > 4.

(c) For each n > 4 the group D,, does not act doubly transitively on the vertices
of an n-gon (see Assignment 8, Exercise 7).

Solution:

(a) As proved in Assignment 9, Exercise 8, the action of S, on {1,...,n} x
{1,...,n} has only two orbits: {(i,4)} and {(,7) : ¢ # j}. This means that
each (i, j) can be mapped to each (¢', j') for i # j and i’ # j' by a permutation
in S, that is, the action of S, on {1,...,n} is doubly transitive.

(b) Let x1,z2,y1,92 € {1,...,n} with 1 # x5 and y; # y. We reason on
different cases distinguished by the cardinality of {z1, z3, y1, ¥}, which ranges
from 2 to 4 and find ¢ € A, sending z; — y;. Recall that a 3-cycle is a product
of two 2-cycles and as such it belongs to A,,.

e Suppose that |{z1,x2,y1,y2}| = 2, so that {z1,22} = {y1,92}. If both
x; = y;, then 0 = id € A,, does the job. Else, x1 = y» and x5 = y;. In
this second subcase n > 4, we can take u,v € {1,...,n} ~{x1, 22, y1, 92}
with u # v and choose 0 = (u v)(x1 y1) = (u v)(x2 Ya2).

e Suppose that [{x1,z2,y1,72} = 3. Without loss of generality, we can
assume that either xy = y; or 1 = yo. In the first subcase, we want to
map z; — x1 and Ty — Yo and we know that xs # yo. This can be done
by taking v € {1,...,n} \ {21, 22,y2} and choosing o = (23 Y2 u) € A,.
In the second subcase, we want to map x; — y; and x5 — x1, which can
be done via 0 = (z3 71 1) € A,.

e Suppose that [{z1, 22, y1,92} = 4. Then o = (21 y1)(x2 y2) € A, does
the job.



(c) Recall that D,, consists of n rotations (including the identity) and n axial
symmetries (reflections). Suppose that o € D, fixes one vertex P. Then
o is either the identity or the reflection through the axis passing through
P. Hence, for a given P’ # P, o(P’) has only two possible images, one of
which is P’ itself, the other is another vertex P”. Since n > 4, we can take
P a vertex different from P, P' and P” and see that there exist no o € D,
mapping P — P and P’ — P, so that the action is not doubly transitive.



