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Solution 19

Normality and separability

1. Let f ∈ k[X] be a monic polynomial which splits into linear factors over k. Suppose
that σ ∈ Aut(k) fixes each root of f . Prove that σ fixes all the coefficients of f .

Solution: Since f is monic and splits in k[X], we can write f =
∏r

i=1(X − ai) for
ai ∈ k the not necessarily distinct roots of f . The coefficients of f are then given
by sums and products of the roots ai. Since σ fixes each ai by assumption (as they
are roots of f) and respects the field operations, σ must fix all the coefficients of f .

2. Let E/k be a splitting field of f ∈ k[X] and consider an extension k′ of k and the
splitting field E ′ of f over k′. Show that each σ ∈ Aut(E ′/k′) satisfies σ(E) = E
and that the resulting homomorphism

ϕ : Aut(E ′/k′) −→ Aut(E/k)

σ 7−→ σ|E

is injective.

Solution: Let a1, . . . , an ∈ E denote the roots of f . We know that E = k(a1, . . . , an)
and E ′ = k′(a1, . . . , an), and since k ⊂ k′, we have E ⊂ E ′ and any σ ∈ Aut(E ′/k′)
fixes k. Moreover, σ sends roots of f to roots of f , hence σ(E) ⊂ E. This means
that the map ϕ is well-defined. It is a homomorphism because restriction and
composition commute.

Let σ ∈ ker(ϕ) ⊂ Aut(E ′/k′). Then σ|E = idE, i.e. σ fixes E. Hence σ fixes both
k′ (by definition) and a1, . . . , an ∈ E, resulting in σ fixing all of k′(a1, . . . , an) = E ′,
so that σ = idE′ . Hence ϕ is injective, as desired.

3. Let E/k be a finite field extension and let Ē be an algebraic closure of E (and
thus of k).

(a) Prove that the following are equivalent:

(i) For every k-homomorphism ϕ : E → Ē we have ϕ(E) ⊂ E.

(ii) Every irreducible polynomial f ∈ k[X] with a root in E splits into linear
factors over E.

(iii) E is the splitting field of some polynomial f ∈ k[X].
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Hint. Prove (ii)⇒(iii)⇒(i)⇒(ii) and use the fact that every k-homomorphism

K → K̄ can be extended to a k-homomorphism K(a)→ K̄ for any a ∈ K̄.

(b) Suppose that the minimal polynomial over k of any element in E has dis-
tinct roots in Ē. Prove that E/k is Galois if and only if every irreducible
polynomial f ∈ k[X] with a root in E splits into linear factors over E.

Solution: Since E is a finite field extension, we can write E = k(a1, . . . , an) for
some a1, . . . , an ∈ E. Let f1, . . . , fn ∈ k[X] denote their respective minimal poly-
nomials.

(a) (ii)⇒(iii): Suppose (ii) is true. Then each fj splits into linear factors over
E and so E contains the splitting field Ef of f :=

∏n
i=1 fi ∈ k[X]. But Ef

contains all roots of f , in particular a1, . . . , an. So Ef contains k(a1, . . . , an) =
E, and thus E = Ef is the splitting field of f .

(iii)⇒(i): SupposeE is the splitting field of f ∈ k[X]. ThenE = k(α1, . . . , αd)
where α1, . . . , αd are the distinct roots of f . Let ϕ ∈ Homk(E, Ē) and let
a ∈ {α1, . . . , αd}. Since f has coefficients in k, we have

f(ϕ(a)) = ϕ(f(a)) = ϕ(0) = 0

and so ϕ({α1, . . . , αd}) ⊂ {α1, . . . , αd}; hence ϕ(E) = ϕ(k(α1, . . . , αd)) ⊂ E.

(i)⇒(ii): Suppose (i) is true and let f ∈ k[X] be irreducible with a root
a ∈ E. Let b ∈ Ē be another root of f . Then there is a k-isomorphism
ψ : k(a) → k(b) ⊂ k̄ = Ē with ψ(a) = b, which can be extended to E
according to the fact in the hint. By assumption, we have ψ(E) ⊂ E and
thus b ∈ E. Since b was arbitrary, all roots of f lie E.

(b) From the lecture we know that E/k is Galois if and only if E is the splitting
field of a polynomial over k with distinct roots. Thus, using Part (a), the
direction ‘⇒’ is clear.

For the converse, note first that any two irreducible polynomials f 6= g ∈ k[X]
have no common roots in any extension k′/k: Indeed, suppose f and g have
a common root in some extension k′/k. Then its minimal polynomial over k
divides both f and g in k[X]. But f and g are irreducible and distinct,
contradiction. By assumption, each of the minimal polynomials f1, . . . , fn of
a1, . . . , an has distinct roots in Ē, and is irreducible over k with a root in
E, thus by assumption splits into linear factors over E. By the preceding
argument, any two of f1, . . . , fn are either equal or have no common zeros.
Without loss of generality assume that f1, . . . , fd are all the distinct ones, for
some 0 < d < n. Then f :=

∏d
i=1 fi is a polynomial over k with distinct

roots a1, . . . , an, all of which lie in E. So for Ef the splitting field of f we
have E = k(a1, . . . , an) ⊂ Ef ⊂ E, hence equality.

4. Show that Aut(R) = {idR}.
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Solution: Let σ ∈ Aut(R). Since σ respects the sum and σ(1) = 1, we notice that
σ|Z = idZ. Now let f = 1/q with q ∈ Z r {0}. We notice that q · σ(f) = σ(qf) =
σ(1) = 1, so that σ(f) = 1/q = f . This proves that σ must be the identity on Q.

Next, we prove that σ is a strictly increasing function. Let x, y ∈ R with x < y
and write y − x = z2 for z ∈ Rr {0}. Then

σ(y)− σ(x) = σ(y − x) = σ(z2) = σ(z)2 > 0,

where σ(z) 6= 0 because z 6= 0 and σ is injective. Hence σ(y) > σ(x).

Now we check that σ is continuous by looking at the preimage of an open interval
I = (a, b) in R. By bijectivity of σ we can write a = σ(α) and b = σ(β) so that

σ−1(I) = {x ∈ R : σ(α) < σ(x) < σ(β)} = (α, β)

which implies, by arbitrarity of the open interval I, that σ is continuous.

Finally, the two maps σ and idR are continuous real functions coinciding on the
dense subset Q. This implies that they must coincide on the whole R and by
arbitrarity of σ we conclude that AutR = {idR}.
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