Prof. Rahul Pandharipande

Solution 19

Normality and separability

1. Let $f \in k[X]$ be a monic polynomial which splits into linear factors over k. Suppose that $\sigma \in \operatorname{Aut}(k)$ fixes each root of f. Prove that σ fixes all the coefficients of f.
Solution: Since f is monic and splits in $k[X]$, we can write $f=\prod_{i=1}^{r}\left(X-a_{i}\right)$ for $a_{i} \in k$ the not necessarily distinct roots of f. The coefficients of f are then given by sums and products of the roots a_{i}. Since σ fixes each a_{i} by assumption (as they are roots of f) and respects the field operations, σ must fix all the coefficients of f.
2. Let E / k be a splitting field of $f \in k[X]$ and consider an extension k^{\prime} of k and the splitting field E^{\prime} of f over k^{\prime}. Show that each $\sigma \in \operatorname{Aut}\left(E^{\prime} / k^{\prime}\right)$ satisfies $\sigma(E)=E$ and that the resulting homomorphism

$$
\begin{aligned}
\varphi: \operatorname{Aut}\left(E^{\prime} / k^{\prime}\right) & \longrightarrow \operatorname{Aut}(E / k) \\
\sigma & \left.\longmapsto \sigma\right|_{E}
\end{aligned}
$$

is injective.
Solution: Let $a_{1}, \ldots, a_{n} \in E$ denote the roots of f. We know that $E=k\left(a_{1}, \ldots, a_{n}\right)$ and $E^{\prime}=k^{\prime}\left(a_{1}, \ldots, a_{n}\right)$, and since $k \subset k^{\prime}$, we have $E \subset E^{\prime}$ and any $\sigma \in \operatorname{Aut}\left(E^{\prime} / k^{\prime}\right)$ fixes k. Moreover, σ sends roots of f to roots of f, hence $\sigma(E) \subset E$. This means that the map φ is well-defined. It is a homomorphism because restriction and composition commute.
Let $\sigma \in \operatorname{ker}(\varphi) \subset \operatorname{Aut}\left(E^{\prime} / k^{\prime}\right)$. Then $\left.\sigma\right|_{E}=\operatorname{id}_{E}$, i.e. σ fixes E. Hence σ fixes both k^{\prime} (by definition) and $a_{1}, \ldots, a_{n} \in E$, resulting in σ fixing all of $k^{\prime}\left(a_{1}, \ldots, a_{n}\right)=E^{\prime}$, so that $\sigma=\operatorname{id}_{E^{\prime}}$. Hence φ is injective, as desired.
3. Let E / k be a finite field extension and let \bar{E} be an algebraic closure of E (and thus of k).
(a) Prove that the following are equivalent:
(i) For every k-homomorphism $\varphi: E \rightarrow \bar{E}$ we have $\varphi(E) \subset E$.
(ii) Every irreducible polynomial $f \in k[X]$ with a root in E splits into linear factors over E.
(iii) E is the splitting field of some polynomial $f \in k[X]$.

Hint. Prove (ii) $\Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{i}) \Rightarrow(\mathrm{ii})$ and use the fact that every k-homomorphism $K \rightarrow \bar{K}$ can be extended to a k-homomorphism $K(a) \rightarrow \bar{K}$ for any $a \in \bar{K}$.
(b) Suppose that the minimal polynomial over k of any element in E has distinct roots in \bar{E}. Prove that E / k is Galois if and only if every irreducible polynomial $f \in k[X]$ with a root in E splits into linear factors over E.

Solution: Since E is a finite field extension, we can write $E=k\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in E$. Let $f_{1}, \ldots, f_{n} \in k[X]$ denote their respective minimal polynomials.
(a) (ii) \Rightarrow (iii): Suppose (ii) is true. Then each f_{j} splits into linear factors over E and so E contains the splitting field E_{f} of $f:=\prod_{i=1}^{n} f_{i} \in k[X]$. But E_{f} contains all roots of f, in particular a_{1}, \ldots, a_{n}. So E_{f} contains $k\left(a_{1}, \ldots, a_{n}\right)=$ E, and thus $E=E_{f}$ is the splitting field of f.
$($ iii $) \Rightarrow(\mathrm{i})$: Suppose E is the splitting field of $f \in k[X]$. Then $E=k\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ where $\alpha_{1}, \ldots, \alpha_{d}$ are the distinct roots of f. Let $\varphi \in \operatorname{Hom}_{k}(E, \bar{E})$ and let $a \in\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$. Since f has coefficients in k, we have

$$
f(\varphi(a))=\varphi(f(a))=\varphi(0)=0
$$

and so $\varphi\left(\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}\right) \subset\left\{\alpha_{1}, \ldots, \alpha_{d}\right\} ;$ hence $\varphi(E)=\varphi\left(k\left(\alpha_{1}, \ldots, \alpha_{d}\right)\right) \subset E$. (i) \Rightarrow (ii): Suppose (i) is true and let $f \in k[X]$ be irreducible with a root $a \in E$. Let $b \in \bar{E}$ be another root of f. Then there is a k-isomorphism $\psi: k(a) \rightarrow k(b) \subset \bar{k}=\bar{E}$ with $\psi(a)=b$, which can be extended to E according to the fact in the hint. By assumption, we have $\psi(E) \subset E$ and thus $b \in E$. Since b was arbitrary, all roots of f lie E.
(b) From the lecture we know that E / k is Galois if and only if E is the splitting field of a polynomial over k with distinct roots. Thus, using Part (a), the direction ' \Rightarrow ' is clear.
For the converse, note first that any two irreducible polynomials $f \neq g \in k[X]$ have no common roots in any extension k^{\prime} / k : Indeed, suppose f and g have a common root in some extension k^{\prime} / k. Then its minimal polynomial over k divides both f and g in $k[X]$. But f and g are irreducible and distinct, contradiction. By assumption, each of the minimal polynomials f_{1}, \ldots, f_{n} of a_{1}, \ldots, a_{n} has distinct roots in \bar{E}, and is irreducible over k with a root in E, thus by assumption splits into linear factors over E. By the preceding argument, any two of f_{1}, \ldots, f_{n} are either equal or have no common zeros. Without loss of generality assume that f_{1}, \ldots, f_{d} are all the distinct ones, for some $0<d<n$. Then $f:=\prod_{i=1}^{d} f_{i}$ is a polynomial over k with distinct roots a_{1}, \ldots, a_{n}, all of which lie in E. So for E_{f} the splitting field of f we have $E=k\left(a_{1}, \ldots, a_{n}\right) \subset E_{f} \subset E$, hence equality.
4. Show that $\operatorname{Aut}(\mathbb{R})=\left\{\operatorname{id}_{\mathbb{R}}\right\}$.

Solution: Let $\sigma \in \operatorname{Aut}(\mathbb{R})$. Since σ respects the sum and $\sigma(1)=1$, we notice that $\left.\sigma\right|_{\mathbb{Z}}=\mathrm{id}_{\mathbb{Z}}$. Now let $f=1 / q$ with $q \in \mathbb{Z} \backslash\{0\}$. We notice that $q \cdot \sigma(f)=\sigma(q f)=$ $\sigma(1)=1$, so that $\sigma(f)=1 / q=f$. This proves that σ must be the identity on \mathbb{Q}.
Next, we prove that σ is a strictly increasing function. Let $x, y \in \mathbb{R}$ with $x<y$ and write $y-x=z^{2}$ for $z \in \mathbb{R} \backslash\{0\}$. Then

$$
\sigma(y)-\sigma(x)=\sigma(y-x)=\sigma\left(z^{2}\right)=\sigma(z)^{2}>0
$$

where $\sigma(z) \neq 0$ because $z \neq 0$ and σ is injective. Hence $\sigma(y)>\sigma(x)$.
Now we check that σ is continuous by looking at the preimage of an open interval $I=(a, b)$ in \mathbb{R}. By bijectivity of σ we can write $a=\sigma(\alpha)$ and $b=\sigma(\beta)$ so that

$$
\sigma^{-1}(I)=\{x \in \mathbb{R}: \sigma(\alpha)<\sigma(x)<\sigma(\beta)\}=(\alpha, \beta)
$$

which implies, by arbitrarity of the open interval I, that σ is continuous.
Finally, the two maps σ and $\operatorname{id}_{\mathbb{R}}$ are continuous real functions coinciding on the dense subset \mathbb{Q}. This implies that they must coincide on the whole \mathbb{R} and by arbitrarity of σ we conclude that $\mathrm{Aut}_{\mathbb{R}}=\left\{\mathrm{id}_{\mathbb{R}}\right\}$.

