Solution 19

NORMALITY AND SEPARABILITY

- Let f ∈ k[X] be a monic polynomial which splits into linear factors over k. Suppose that σ ∈ Aut(k) fixes each root of f. Prove that σ fixes all the coefficients of f. Solution: Since f is monic and splits in k[X], we can write f = ∏^r_{i=1}(X − a_i) for a_i ∈ k the not necessarily distinct roots of f. The coefficients of f are then given by sums and products of the roots a_i. Since σ fixes each a_i by assumption (as they are roots of f) and respects the field operations, σ must fix all the coefficients of f.
- 2. Let E/k be a splitting field of $f \in k[X]$ and consider an extension k' of k and the splitting field E' of f over k'. Show that each $\sigma \in \operatorname{Aut}(E'/k')$ satisfies $\sigma(E) = E$ and that the resulting homomorphism

$$\varphi \colon \operatorname{Aut}(E'/k') \longrightarrow \operatorname{Aut}(E/k)$$
$$\sigma \longmapsto \sigma|_E$$

is injective.

Solution: Let $a_1, \ldots, a_n \in E$ denote the roots of f. We know that $E = k(a_1, \ldots, a_n)$ and $E' = k'(a_1, \ldots, a_n)$, and since $k \subset k'$, we have $E \subset E'$ and any $\sigma \in \operatorname{Aut}(E'/k')$ fixes k. Moreover, σ sends roots of f to roots of f, hence $\sigma(E) \subset E$. This means that the map φ is well-defined. It is a homomorphism because restriction and composition commute.

Let $\sigma \in \ker(\varphi) \subset \operatorname{Aut}(E'/k')$. Then $\sigma|_E = \operatorname{id}_E$, i.e. σ fixes E. Hence σ fixes both k' (by definition) and $a_1, \ldots, a_n \in E$, resulting in σ fixing all of $k'(a_1, \ldots, a_n) = E'$, so that $\sigma = \operatorname{id}_{E'}$. Hence φ is injective, as desired.

- 3. Let E/k be a finite field extension and let \overline{E} be an algebraic closure of E (and thus of k).
 - (a) Prove that the following are equivalent:
 - (i) For every k-homomorphism $\varphi \colon E \to \overline{E}$ we have $\varphi(E) \subset E$.
 - (ii) Every irreducible polynomial $f \in k[X]$ with a root in E splits into linear factors over E.
 - (iii) E is the splitting field of some polynomial $f \in k[X]$.

Hint. Prove (ii) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (ii) and use the fact that every k-homomorphism $K \rightarrow \bar{K}$ can be extended to a k-homomorphism $K(a) \rightarrow \bar{K}$ for any $a \in \bar{K}$.

(b) Suppose that the minimal polynomial over k of any element in E has distinct roots in \overline{E} . Prove that E/k is Galois if and only if every irreducible polynomial $f \in k[X]$ with a root in E splits into linear factors over E.

Solution: Since E is a finite field extension, we can write $E = k(a_1, \ldots, a_n)$ for some $a_1, \ldots, a_n \in E$. Let $f_1, \ldots, f_n \in k[X]$ denote their respective minimal polynomials.

(a) (ii) \Rightarrow (iii): Suppose (ii) is true. Then each f_j splits into linear factors over E and so E contains the splitting field E_f of $f := \prod_{i=1}^n f_i \in k[X]$. But E_f contains all roots of f, in particular a_1, \ldots, a_n . So E_f contains $k(a_1, \ldots, a_n) = E$, and thus $E = E_f$ is the splitting field of f.

(iii) \Rightarrow (i): Suppose *E* is the splitting field of $f \in k[X]$. Then $E = k(\alpha_1, \ldots, \alpha_d)$ where $\alpha_1, \ldots, \alpha_d$ are the distinct roots of *f*. Let $\varphi \in \text{Hom}_k(E, \overline{E})$ and let $a \in \{\alpha_1, \ldots, \alpha_d\}$. Since *f* has coefficients in *k*, we have

$$f(\varphi(a)) = \varphi(f(a)) = \varphi(0) = 0$$

and so $\varphi(\{\alpha_1, \ldots, \alpha_d\}) \subset \{\alpha_1, \ldots, \alpha_d\}$; hence $\varphi(E) = \varphi(k(\alpha_1, \ldots, \alpha_d)) \subset E$. (i) \Rightarrow (ii): Suppose (i) is true and let $f \in k[X]$ be irreducible with a root $a \in E$. Let $b \in \overline{E}$ be another root of f. Then there is a k-isomorphism $\psi: k(a) \rightarrow k(b) \subset \overline{k} = \overline{E}$ with $\psi(a) = b$, which can be extended to E according to the fact in the hint. By assumption, we have $\psi(E) \subset E$ and thus $b \in E$. Since b was arbitrary, all roots of f lie E.

(b) From the lecture we know that E/k is Galois if and only if E is the splitting field of a polynomial over k with distinct roots. Thus, using Part (a), the direction ' \Rightarrow ' is clear.

For the converse, note first that any two irreducible polynomials $f \neq g \in k[X]$ have no common roots in any extension k'/k. Indeed, suppose f and g have a common root in some extension k'/k. Then its minimal polynomial over kdivides both f and g in k[X]. But f and g are irreducible and distinct, contradiction. By assumption, each of the minimal polynomials f_1, \ldots, f_n of a_1, \ldots, a_n has distinct roots in \overline{E} , and is irreducible over k with a root in E, thus by assumption splits into linear factors over E. By the preceding argument, any two of f_1, \ldots, f_n are either equal or have no common zeros. Without loss of generality assume that f_1, \ldots, f_d are all the distinct ones, for some 0 < d < n. Then $f := \prod_{i=1}^d f_i$ is a polynomial over k with distinct roots a_1, \ldots, a_n , all of which lie in E. So for E_f the splitting field of f we have $E = k(a_1, \ldots, a_n) \subset E_f \subset E$, hence equality.

4. Show that $\operatorname{Aut}(\mathbb{R}) = {\operatorname{id}_{\mathbb{R}}}.$

Solution: Let $\sigma \in \operatorname{Aut}(\mathbb{R})$. Since σ respects the sum and $\sigma(1) = 1$, we notice that $\sigma|_{\mathbb{Z}} = \operatorname{id}_{\mathbb{Z}}$. Now let f = 1/q with $q \in \mathbb{Z} \setminus \{0\}$. We notice that $q \cdot \sigma(f) = \sigma(qf) = \sigma(1) = 1$, so that $\sigma(f) = 1/q = f$. This proves that σ must be the identity on \mathbb{Q} . Next, we prove that σ is a strictly increasing function. Let $x, y \in \mathbb{R}$ with x < y and write $y - x = z^2$ for $z \in \mathbb{R} \setminus \{0\}$. Then

$$\sigma(y) - \sigma(x) = \sigma(y - x) = \sigma(z^2) = \sigma(z)^2 > 0,$$

where $\sigma(z) \neq 0$ because $z \neq 0$ and σ is injective. Hence $\sigma(y) > \sigma(x)$.

Now we check that σ is continuous by looking at the preimage of an open interval I = (a, b) in \mathbb{R} . By bijectivity of σ we can write $a = \sigma(\alpha)$ and $b = \sigma(\beta)$ so that

$$\sigma^{-1}(I) = \{ x \in \mathbb{R} : \sigma(\alpha) < \sigma(x) < \sigma(\beta) \} = (\alpha, \beta)$$

which implies, by arbitrarity of the open interval I, that σ is continuous.

Finally, the two maps σ and $id_{\mathbb{R}}$ are continuous real functions coinciding on the dense subset \mathbb{Q} . This implies that they must coincide on the whole \mathbb{R} and by arbitrarity of σ we conclude that $Aut_{\mathbb{R}} = \{id_{\mathbb{R}}\}$.