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Solution 20

Galois correspondence. Simple extensions

1. Let f = X3 − 2 ∈ Q[X] and consider its splitting field E. Recall from Assign-
ment 16 that Gal(E/Q) ∼= S3. Write down the lattice of subgroups of S3 and the
corresponding fixed fields. Which of those are normal?

Solution: The polynomial f has roots z1 = 3
√

2, z2 = 3
√

2ω and z3 = 3
√

2ω2, where
ω = e

2πi
3 . The identification Gal(E/Q) ∼= S3 is given by σ(zi) = zσ(i) for σ ∈ S3.

One can determine the image of ω under σ as

σ(ω) =
σ(z2)

σ(z1)
=
zσ(2)
zσ(1)

= ωσ(2)−σ(1).

The subgroups of S3 are given by 1, S3 itself, A3 = 〈(1 2 3)〉 and the three non-
normal subgroups Hi = 〈(j k)〉 for each choice of {i, j, k} = {1, 2, 3}. The only
containments are given by 1 6 Hi 6 S3 and 1 6 A3 E S3. Denoting by EG the
fixed field of G, we have

1
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By construction, we see that Hi fixes zi for each i ∈ {1, 2, 3}, so that Q(zi) ⊂ EHi .
Since [E : Q(zi)] = 2 = |Hi| = [E : EHi ], we conclude that EHi = Q(zi).

By Galois correspondence, EA3/Q is the only intermediate extension which is
Galois, and it is also the unique extension of degree 2. Since Q(ω)/Q is a quadratic
field extension (the minimal polynomial of ω being X2 + X + 1 ∈ Q[X]) and
Q(ω) ⊂ E, we must have EA3 = Q(ω). Alternatively, one can directly check
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that A3 fixes ω and conclude by comparing the degrees of the extensions: For
τ = (1 2 3), a generator of A3, we have

τ(ω) = ωτ(2)−τ(1) = ω3−2 = ω.

2. Let k be a field and f ∈ k[X] a polynomial with distinct roots. Let E be the
splitting field of f and enumerate the roots of f by z1, . . . , zn to fix an embedding
Gal(E/k) ⊂ Sn. Define the discriminant of f as

D(f) =
∏
i<j

(zi − zj)2.

(a) Assume that char(k) 6= 2. Prove that D(f) is a square in k if and only if
Gal(E/k) ⊂ An.

(b) Show that F4/F2 is a counterexample in characteristic 2 to the previous part.

Solution:

(a) Let ∆(f) =
∏

i<j(zi−zj). The square roots of D(f) in E are given by ±∆(f),
so D(f) is a square in k if and only if ∆(f) ∈ k. For σ ∈ Gal(E/k), we have
σ(∆(f)) = sgn(σ)∆(f) (since the zi are distinct); hence ∆(f) is fixed by σ if
and only if σ ∈ An (because char(k) 6= 2).

Since E/k is Galois, ∆(f) lies in k if and only if it is fixed by all σ ∈ Gal(E/k),
which by what we just showed is equivalent to Gal(E/k) ⊂ An.

(b) For k = F2 and E = F4, we have Gal(E/k) = S2 = 〈σ〉, where σ is the
Frobenius automorphism of F4. We can write E = k(α) where α is a root of
f = X2 + X + 1 ∈ k[X], and E is a splitting field of f . The other root of f
is α+ 1. Then ∆(f) = (α+ 1)− α = 1 ∈ F2, so that D(f) is a square in F2,
although Gal(E/k) is not contained in A2 = 1.

3. Let L/k be a finite field extension and fix an embedding L ⊂ k.

(a) Show that there exists a minimal finite field extension E/k containing L
which is the splitting field of some polynomial.

(b) Show that if L/k is separable (i.e. the minimal polynomial over k of any
element in L has distinct roots in k̄), then E/k is Galois. In this case, E is
called the Galois closure of L/k.

Hint: Assignment 19, Exercise 3.

Solution:
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(a) Since L/k is a finite extension, it is finitely generated. Write L = k(x1, . . . , xn)
and for each i = 1, . . . , n let fi be the minimal polynomial of xi over k. Let E
be the splitting field of the product f = f1 · · · fn. Then E clearly contains L.
By Assignment 19, Exercise 3(a), we know that any extension of k which is
the splitting field of some polynomial g ∈ k[X] and contains xi must contain
all roots of its minimal polynomial fi as well, so E is minimal by construction.

(b) If L/k is separable, then E/k from Part (a) is the splitting field of a poly-
nomial with distinct roots as shown in the proof of Part (b) of Exercise 3 in
Assignment 19. Thus, again by that exercise, E/k is Galois.

4. We say that a field extension L/k is simple if there exists x ∈ L such that L = k(x).
In this exercise we will prove the following result:

Lemma. A finite field extensions L/k is simple if and only if there are finitely
many intermediate field extensions L/F/k.

(a) Suppose L = k(x) for some x ∈ L and let L/F/k be an intermediate exten-
sion. Let f ∈ F [X] be the minimal polynomial of x over F and let F0 ⊂ F
be the extension of k generated by the coefficients of f . Prove that F = F0.

Hint: Check that F (x) = F0(x) and compare degrees.

(b) Conclude that if L/k is simple, then it contains only finitely many interme-
diate subextensions.

Hint: In Part (a), f divides the minimal polynomial of x over k.

(c) Let k be an infinite field and V a k-vector space. Suppose that V1, . . . , Vm are
finitely many proper subspaces of V . Prove by induction that

⋃m
i=1 Vi 6= V .

(d) Suppose that a finite field extension L/k contains only finitely many inter-
mediate extensions. Prove that L/k is simple.

Solution:

(a) The polynomial f is irreducible in F [X], hence also in F0[X]. This means
that [F (x) : F ] = deg(f) = [F0(x) : F0]. But

L = k(x) ⊂ F0(x) ⊂ F (x) ⊂ L

implies that F0(x) = F (x), so that

[F : F0] =
[F (x) : F0]

[F (x) : F ]
=

[F0(x) : F0]

[F (x) : F ]
= 1.

(b) By Part (a), if L = k(x)/F/k is an intermediate extension, then F is gen-
erated by the coefficients of the minimal polynomial f of x over F , which
is a proper monic factor of the minimal polynomial g of x over k in L[X].
Since g has only finitely many proper monic factors, there are only finitely
many intermediate extensions L/F/k.
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(c) See Chambert-Loir, A Field Guide to Algebra, Lemma 3.3.4.

(d) Suppose that k is finite. Then L is finite, too. By Algebra I, we know that
L× is a cyclic group, so that for x a generator of L×, we know that k(x)
contains the whole L×, implying that L = k(x).

Suppose that k is an infinite field. By assumption, there are only finitely
many intermediate extensions of L/k. In particular, there are only finitely
many intermediate simple extensions L1, . . . , Lm/k. As each u ∈ L lies in
the simple extension k(u), we know that L = ∪mi=1Li. Then, by Part (c), we
must have L = Li for some i, so L/k is itself a simple extension.

5. (Primitive Element Theorem) Let L/k be a finite separable field extension. Prove
that there exists x ∈ L such that L = k(x), i.e. that L is simple.

Hint: Use the preceding exercises.

Solution: By Exercise 3, L/k is contained in a finite Galois extension E/k. By the
Galois correspondence, the intermediate field extensions of E/k are in bijection
with the subgroups of the finite group Gal(E/k), so there are only finitely many.
This implies that L/k also has only finitely many intermediate field extensions.
By Exercise 4, L/k is a simple extension.

6. Prove that the field extension Fp(s, t)/Fp(sp, tp), where s and t are formal variables,
contains infinitely many intermediate extensions.

Hint: Use Exercise 4.

Solution: By Exercise 4, it suffices to prove that Fp(s, t)/Fp(sp, tp) is not simple.
We first compute the degree of this extension. We have a tower of field extensions
Fp(s, t)/Fp(sp, t)/Fp(sp, tp). Note that Fp(s, t) = Fp(sp, t)(s) and that s is the
unique root of the polynomial

(X − s)p = Xp − sp ∈ Fp(sp, t)[X],

which is irreducible because its monic proper factors in Fp(s, t)[X] have constant
term not in Fp(sp, t). Thus, we obtain [Fp(s, t) : Fp(sp, t)] = p. Similarly, we see
that [Fp(sp, t) : Fp(sp, tp)] = p because Xp− tp is the minimal polynomial of t over
Fp(sp, tp). All in all we obtain

[Fp(s, t) : Fp(sp, tp)] = [Fp(s, t) : Fp(sp, t)][Fp(sp, t) : Fp(sp, tp)] = p2.

Suppose by contradiction that Fp(s, t)/Fp(sp, tp) is simple and let f ∈ Fp(s, t) be
a generator, i.e. Fp(s, t) = Fp(sp, tp)(f). The Frobenius map x 7→ xp is a field
endomorphism of Fp(s, t), which implies that fp ∈ Fp(sp, tp). Thus, the minimal
polynomial of f over Fp(sp, tp) divides Xp − fp ∈ Fp(sp, tp)[X], so

p2 = [Fp(s, t) : Fp(sp, tp)] = [Fp(sp, tp)(f) : Fp(sp, tp)] 6 p,

a contradiction. Hence Fp(s, t)/Fp(sp, tp) is not simple.
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