Prof. Rahul Pandharipande

Solution 20

Galois correspondence. Simple extensions

1. Let $f=X^{3}-2 \in \mathbb{Q}[X]$ and consider its splitting field E. Recall from Assignment 16 that $\operatorname{Gal}(E / \mathbb{Q}) \cong S_{3}$. Write down the lattice of subgroups of S_{3} and the corresponding fixed fields. Which of those are normal?
Solution: The polynomial f has roots $z_{1}=\sqrt[3]{2}, z_{2}=\sqrt[3]{2} \omega$ and $z_{3}=\sqrt[3]{2} \omega^{2}$, where $\omega=e^{\frac{2 \pi i}{3}}$. The identification $\operatorname{Gal}(E / \mathbb{Q}) \cong S_{3}$ is given by $\sigma\left(z_{i}\right)=z_{\sigma(i)}$ for $\sigma \in S_{3}$. One can determine the image of ω under σ as

$$
\sigma(\omega)=\frac{\sigma\left(z_{2}\right)}{\sigma\left(z_{1}\right)}=\frac{z_{\sigma(2)}}{z_{\sigma(1)}}=\omega^{\sigma(2)-\sigma(1)}
$$

The subgroups of S_{3} are given by $1, S_{3}$ itself, $A_{3}=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle$ and the three nonnormal subgroups $H_{i}=\langle(j k)\rangle$ for each choice of $\{i, j, k\}=\{1,2,3\}$. The only containments are given by $1 \leqslant H_{i} \leqslant S_{3}$ and $1 \leqslant A_{3} \unlhd S_{3}$. Denoting by E^{G} the fixed field of G, we have

By construction, we see that H_{i} fixes z_{i} for each $i \in\{1,2,3\}$, so that $\mathbb{Q}\left(z_{i}\right) \subset E^{H_{i}}$. Since $\left[E: \mathbb{Q}\left(z_{i}\right)\right]=2=\left|H_{i}\right|=\left[E: E^{H_{i}}\right]$, we conclude that $E^{H_{i}}=\mathbb{Q}\left(z_{i}\right)$.
By Galois correspondence, $E^{A_{3}} / \mathbb{Q}$ is the only intermediate extension which is Galois, and it is also the unique extension of degree 2 . Since $\mathbb{Q}(\omega) / \mathbb{Q}$ is a quadratic field extension (the minimal polynomial of ω being $X^{2}+X+1 \in \mathbb{Q}[X]$) and $\mathbb{Q}(\omega) \subset E$, we must have $E^{A_{3}}=\mathbb{Q}(\omega)$. Alternatively, one can directly check
that A_{3} fixes ω and conclude by comparing the degrees of the extensions: For $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)$, a generator of A_{3}, we have

$$
\tau(\omega)=\omega^{\tau(2)-\tau(1)}=\omega^{3-2}=\omega
$$

2. Let k be a field and $f \in k[X]$ a polynomial with distinct roots. Let E be the splitting field of f and enumerate the roots of f by z_{1}, \ldots, z_{n} to fix an embedding $\operatorname{Gal}(E / k) \subset S_{n}$. Define the discriminant of f as

$$
D(f)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2}
$$

(a) Assume that $\operatorname{char}(k) \neq 2$. Prove that $D(f)$ is a square in k if and only if $\operatorname{Gal}(E / k) \subset A_{n}$.
(b) Show that $\mathbb{F}_{4} / \mathbb{F}_{2}$ is a counterexample in characteristic 2 to the previous part.

Solution:

(a) Let $\Delta(f)=\prod_{i<j}\left(z_{i}-z_{j}\right)$. The square roots of $D(f)$ in E are given by $\pm \Delta(f)$, so $D(f)$ is a square in k if and only if $\Delta(f) \in k$. For $\sigma \in \operatorname{Gal}(E / k)$, we have $\sigma(\Delta(f))=\operatorname{sgn}(\sigma) \Delta(f)$ (since the z_{i} are distinct); hence $\Delta(f)$ is fixed by σ if and only if $\sigma \in A_{n}$ (because char $(k) \neq 2$).
Since E / k is Galois, $\Delta(f)$ lies in k if and only if it is fixed by all $\sigma \in \operatorname{Gal}(E / k)$, which by what we just showed is equivalent to $\operatorname{Gal}(E / k) \subset A_{n}$.
(b) For $k=\mathbb{F}_{2}$ and $E=\mathbb{F}_{4}$, we have $\operatorname{Gal}(E / k)=S_{2}=\langle\sigma\rangle$, where σ is the Frobenius automorphism of \mathbb{F}_{4}. We can write $E=k(\alpha)$ where α is a root of $f=X^{2}+X+1 \in k[X]$, and E is a splitting field of f. The other root of f is $\alpha+1$. Then $\Delta(f)=(\alpha+1)-\alpha=1 \in \mathbb{F}_{2}$, so that $D(f)$ is a square in \mathbb{F}_{2}, although $\operatorname{Gal}(E / k)$ is not contained in $A_{2}=1$.
3. Let L / k be a finite field extension and fix an embedding $L \subset \bar{k}$.
(a) Show that there exists a minimal finite field extension E / k containing L which is the splitting field of some polynomial.
(b) Show that if L / k is separable (i.e. the minimal polynomial over k of any element in L has distinct roots in \bar{k}), then E / k is Galois. In this case, E is called the Galois closure of L / k.

Hint: Assignment 19, Exercise 3.

Solution:

(a) Since L / k is a finite extension, it is finitely generated. Write $L=k\left(x_{1}, \ldots, x_{n}\right)$ and for each $i=1, \ldots, n$ let f_{i} be the minimal polynomial of x_{i} over k. Let E be the splitting field of the product $f=f_{1} \cdots f_{n}$. Then E clearly contains L. By Assignment 19, Exercise 3(a), we know that any extension of k which is the splitting field of some polynomial $g \in k[X]$ and contains x_{i} must contain all roots of its minimal polynomial f_{i} as well, so E is minimal by construction.
(b) If L / k is separable, then E / k from Part (a) is the splitting field of a polynomial with distinct roots as shown in the proof of Part (b) of Exercise 3 in Assignment 19. Thus, again by that exercise, E / k is Galois.
4. We say that a field extension L / k is simple if there exists $x \in L$ such that $L=k(x)$. In this exercise we will prove the following result:
Lemma. A finite field extensions L / k is simple if and only if there are finitely many intermediate field extensions $L / F / k$.
(a) Suppose $L=k(x)$ for some $x \in L$ and let $L / F / k$ be an intermediate extension. Let $f \in F[X]$ be the minimal polynomial of x over F and let $F_{0} \subset F$ be the extension of k generated by the coefficients of f. Prove that $F=F_{0}$. Hint: Check that $F(x)=F_{0}(x)$ and compare degrees.
(b) Conclude that if L / k is simple, then it contains only finitely many intermediate subextensions.
Hint: In Part (a), f divides the minimal polynomial of x over k.
(c) Let k be an infinite field and V a k-vector space. Suppose that V_{1}, \ldots, V_{m} are finitely many proper subspaces of V. Prove by induction that $\bigcup_{i=1}^{m} V_{i} \neq V$.
(d) Suppose that a finite field extension L / k contains only finitely many intermediate extensions. Prove that L / k is simple.

Solution:

(a) The polynomial f is irreducible in $F[X]$, hence also in $F_{0}[X]$. This means that $[F(x): F]=\operatorname{deg}(f)=\left[F_{0}(x): F_{0}\right]$. But

$$
L=k(x) \subset F_{0}(x) \subset F(x) \subset L
$$

implies that $F_{0}(x)=F(x)$, so that

$$
\left[F: F_{0}\right]=\frac{\left[F(x): F_{0}\right]}{[F(x): F]}=\frac{\left[F_{0}(x): F_{0}\right]}{[F(x): F]}=1 .
$$

(b) By Part (a), if $L=k(x) / F / k$ is an intermediate extension, then F is generated by the coefficients of the minimal polynomial f of x over F, which is a proper monic factor of the minimal polynomial g of x over k in $L[X]$. Since g has only finitely many proper monic factors, there are only finitely many intermediate extensions $L / F / k$.
(c) See Chambert-Loir, A Field Guide to Algebra, Lemma 3.3.4.
(d) Suppose that k is finite. Then L is finite, too. By Algebra I, we know that L^{\times}is a cyclic group, so that for x a generator of L^{\times}, we know that $k(x)$ contains the whole L^{\times}, implying that $L=k(x)$.
Suppose that k is an infinite field. By assumption, there are only finitely many intermediate extensions of L / k. In particular, there are only finitely many intermediate simple extensions $L_{1}, \ldots, L_{m} / k$. As each $u \in L$ lies in the simple extension $k(u)$, we know that $L=\cup_{i=1}^{m} L_{i}$. Then, by Part (c), we must have $L=L_{i}$ for some i, so L / k is itself a simple extension.
5. (Primitive Element Theorem) Let L / k be a finite separable field extension. Prove that there exists $x \in L$ such that $L=k(x)$, i.e. that L is simple.
Hint: Use the preceding exercises.
Solution: By Exercise $3, L / k$ is contained in a finite Galois extension E / k. By the Galois correspondence, the intermediate field extensions of E / k are in bijection with the subgroups of the finite group $\operatorname{Gal}(E / k)$, so there are only finitely many. This implies that L / k also has only finitely many intermediate field extensions. By Exercise $4, L / k$ is a simple extension.
6. Prove that the field extension $\mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$, where s and t are formal variables, contains infinitely many intermediate extensions.
Hint: Use Exercise 4.
Solution: By Exercise 4, it suffices to prove that $\mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$ is not simple. We first compute the degree of this extension. We have a tower of field extensions $\mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t\right) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$. Note that $\mathbb{F}_{p}(s, t)=\mathbb{F}_{p}\left(s^{p}, t\right)(s)$ and that s is the unique root of the polynomial

$$
(X-s)^{p}=X^{p}-s^{p} \in \mathbb{F}_{p}\left(s^{p}, t\right)[X],
$$

which is irreducible because its monic proper factors in $\mathbb{F}_{p}(s, t)[X]$ have constant term not in $\mathbb{F}_{p}\left(s^{p}, t\right)$. Thus, we obtain $\left[\mathbb{F}_{p}(s, t): \mathbb{F}_{p}\left(s^{p}, t\right)\right]=p$. Similarly, we see that $\left[\mathbb{F}_{p}\left(s^{p}, t\right): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right]=p$ because $X^{p}-t^{p}$ is the minimal polynomial of t over $\mathbb{F}_{p}\left(s^{p}, t^{p}\right)$. All in all we obtain

$$
\left[\mathbb{F}_{p}(s, t): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right]=\left[\mathbb{F}_{p}(s, t): \mathbb{F}_{p}\left(s^{p}, t\right)\right]\left[\mathbb{F}_{p}\left(s^{p}, t\right): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right]=p^{2}
$$

Suppose by contradiction that $\mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$ is simple and let $f \in \mathbb{F}_{p}(s, t)$ be a generator, i.e. $\mathbb{F}_{p}(s, t)=\mathbb{F}_{p}\left(s^{p}, t^{p}\right)(f)$. The Frobenius map $x \mapsto x^{p}$ is a field endomorphism of $\mathbb{F}_{p}(s, t)$, which implies that $f^{p} \in \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$. Thus, the minimal polynomial of f over $\mathbb{F}_{p}\left(s^{p}, t^{p}\right)$ divides $X^{p}-f^{p} \in \mathbb{F}_{p}\left(s^{p}, t^{p}\right)[X]$, so

$$
p^{2}=\left[\mathbb{F}_{p}(s, t): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right]=\left[\mathbb{F}_{p}\left(s^{p}, t^{p}\right)(f): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right] \leqslant p,
$$

a contradiction. Hence $\mathbb{F}_{p}(s, t) / \mathbb{F}_{p}\left(s^{p}, t^{p}\right)$ is not simple.

