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Solution 20

(GALOIS CORRESPONDENCE. SIMPLE EXTENSIONS

1. Let f = X3 —2 € Q[X] and consider its splitting field E. Recall from Assign-
ment 16 that Gal(E/Q) = S5. Write down the lattice of subgroups of S; and the
corresponding fixed fields. Which of those are normal?

Solution: The polynomial f has roots z; = \3/5, 29 = V2w and 23 = \?/§w2, where
w = €5, The identification Gal(E/Q) 2 S5 is given by o(z) = Zo(s) for o € Ss.
One can determine the image of w under o as

o(22) _ Z( — 0o
o(z1)  Ze()

The subgroups of S3 are given by 1, Ss itself, A3 = ((1 2 3)) and the three non-
normal subgroups H; = ((j k)) for each choice of {i,j,k} = {1,2,3}. The only

containments are given by 1 < H; < S3 and 1 < A3 < 55. Denoting by EC the
fixed field of GG, we have
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By construction, we see that H; fixes z; for each i € {1,2,3}, so that Q(z;) C B,
Since [E: Q(z;)] = 2 = |H;| = [E : E*i], we conclude that Efi = Q(2;).

By Galois correspondence, E43/Q is the only intermediate extension which is
Galois, and it is also the unique extension of degree 2. Since Q(w)/Q is a quadratic
field extension (the minimal polynomial of w being X% + X + 1 € Q[X]) and
Q(w) C E, we must have E4 = Q(w). Alternatively, one can directly check



that Aj fixes w and conclude by comparing the degrees of the extensions: For
7 = (1 2 3), a generator of Az, we have

2. Let k be a field and f € k[X] a polynomial with distinct roots. Let E be the
splitting field of f and enumerate the roots of f by zq,..., 2, to fix an embedding
Gal(E/k) C S,. Define the discriminant of f as

i<j
(a) Assume that char(k) # 2. Prove that D(f) is a square in k if and only if
Gal(E/k) C A,.

(b) Show that F,/F, is a counterexample in characteristic 2 to the previous part.
Solution:

(a) Let A(f) = [[;;(2i—2;). The square roots of D(f) in E are given by £A(f),
so D(f) is a square in k if and only if A(f) € k. For 0 € Gal(E/k), we have
g(A(f)) =sgn(o)A(f) (since the z; are distinct); hence A(f) is fixed by o if
and only if o € A,, (because char(k) # 2).

Since E/k is Galois, A(f) lies in k if and only if it is fixed by all 0 € Gal(E/k),
which by what we just showed is equivalent to Gal(E/k) C A,.

(b) For k = Fy and E = F4, we have Gal(E/k) = Sy = (o), where o is the
Frobenius automorphism of F,. We can write E = k(a) where « is a root of
f=X?+X+1€k[X], and E is a splitting field of f. The other root of f
is @+ 1. Then A(f) = (a+1) —a =1 € Fy, so that D(f) is a square in Fy,
although Gal(E/k) is not contained in Ay = 1.

3. Let L/k be a finite field extension and fix an embedding L C k.
(a) Show that there exists a minimal finite field extension E/k containing L
which is the splitting field of some polynomial.
(b) Show that if L/k is separable (i.e. the minimal polynomial over k of any

element in L has distinct roots in k), then E/k is Galois. In this case, F is
called the Galois closure of L/k.

Hint: Assignment 19, Exercise 3.

Solution:



()

Since L/k is a finite extension, it is finitely generated. Write L = k(xy, ..., z,)
and for each 7 = 1,...,n let f; be the minimal polynomial of x; over k. Let
be the splitting field of the product f = f;--- f,,. Then E clearly contains L.
By Assignment 19, Exercise 3(a), we know that any extension of k which is
the splitting field of some polynomial g € k[X] and contains z; must contain
all roots of its minimal polynomial f; as well, so F is minimal by construction.

If L/k is separable, then E/k from Part (a) is the splitting field of a poly-
nomial with distinct roots as shown in the proof of Part (b) of Exercise 3 in
Assignment 19. Thus, again by that exercise, E/k is Galois.

4. We say that a field extension L/k is simple if there exists x € L such that L = k(x).
In this exercise we will prove the following result:

Lemma. A finite field extensions L/k is simple if and only if there are finitely
many intermediate field extensions L/F/k.

()

(b)

(c)
(d)

Suppose L = k(z) for some = € L and let L/F/k be an intermediate exten-
sion. Let f € F[X] be the minimal polynomial of z over F' and let Fy C F
be the extension of k generated by the coefficients of f. Prove that F' = Fj,.
Hint: Check that F(x) = Fy(x) and compare degrees.

Conclude that if L/k is simple, then it contains only finitely many interme-
diate subextensions.

Hint: In Part (a), f divides the minimal polynomial of x over k.

Let k be an infinite field and V' a k-vector space. Suppose that Vi,...,V,, are
finitely many proper subspaces of V. Prove by induction that (J*, V; # V.

Suppose that a finite field extension L/k contains only finitely many inter-
mediate extensions. Prove that L/k is simple.

Solution:

(a)

The polynomial f is irreducible in F[X], hence also in Fy[X]. This means
that [F(z) : F] = deg(f) = [Fo(x) : Fo. But
L=Fk(z)C Fy(zr) C F(z)C L
implies that Fy(z) = F(z), so that
[F(x) : Fo] _ [Folx) : Fol
[F(z): F] [F(x) : F]
By Part (a), if L = k(z)/F/k is an intermediate extension, then F' is gen-
erated by the coefficients of the minimal polynomial f of x over F, which
is a proper monic factor of the minimal polynomial g of = over k in L[X].

Since g has only finitely many proper monic factors, there are only finitely
many intermediate extensions L/F/k.

[FIFQ]: =1.
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(c) See Chambert-Loir, A Field Guide to Algebra, Lemma 3.3.4.

(d) Suppose that k is finite. Then L is finite, too. By Algebra I, we know that

L* is a cyclic group, so that for x a generator of L*, we know that k(z)
contains the whole L*, implying that L = k(z).
Suppose that k£ is an infinite field. By assumption, there are only finitely
many intermediate extensions of L/k. In particular, there are only finitely
many intermediate simple extensions L1, ..., L, /k. As each u € L lies in
the simple extension k(u), we know that L = U, L,;. Then, by Part (c), we
must have L = L; for some i, so L/k is itself a simple extension.

5. (Primitive Element Theorem) Let L/k be a finite separable field extension. Prove
that there exists € L such that L = k(z), i.e. that L is simple.

Hint: Use the preceding exercises.

Solution: By Exercise 3, L/k is contained in a finite Galois extension E/k. By the
Galois correspondence, the intermediate field extensions of E/k are in bijection
with the subgroups of the finite group Gal(E/k), so there are only finitely many.
This implies that L/k also has only finitely many intermediate field extensions.
By Exercise 4, L/k is a simple extension.

6. Prove that the field extension F,(s,t)/F,(s?,t?), where s and ¢ are formal variables,
contains infinitely many intermediate extensions.

Hint: Use Exercise 4.

Solution: By Exercise 4, it suffices to prove that F,(s,t)/F,(s?,t?) is not simple.
We first compute the degree of this extension. We have a tower of field extensions
F,(s,t)/F,(sP,t)/Fy(sP,t?). Note that F,(s,t) = F,(s,t)(s) and that s is the
unique root of the polynomial

(X —s)P = XP —sP e F, (s, 1)[X],

which is irreducible because its monic proper factors in F,(s,t)[X] have constant
term not in F,(s?,t). Thus, we obtain [F,(s,t) : F,(s?,t)] = p. Similarly, we see
that [F,(s?,t) : F,(sP,t?)] = p because X? —t* is the minimal polynomial of ¢ over
F,(s?,t7). All in all we obtain

[Fp(s, 1) : Fp(s”, 7)) = [Fy(s,t) : Fp(s”, )] [Fp(s”, 1) : Fp(s”,8")] = P
Suppose by contradiction that F,(s,t)/F,(s?,t?) is simple and let f € F,(s,t) be
a generator, i.e. Fy(s,t) = F,(s?,t*)(f). The Frobenius map x — 2P is a field

endomorphism of F,(s, ), which implies that f? € F,(s”,t?). Thus, the minimal
polynomial of f over [F,(sP,t?) divides X? — fP € F,(s”, t*)[X], so

p* = [Fp(s,t) : Fp(s7,7)] = [Fy(s7, 87)(f) : Fp(s”, 7)) < p,

a contradiction. Hence F,(s,t)/F,(s?, ") is not simple.



