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Extensions of Finite Fields, Splitting Fields

1. Let L1/K1 and L2/K2 be two field extensions and ϕ : L1 −→ L2 an isomorphism
of fields such that ϕ(K1) = K2. Prove that [L1 : K1] = [L2 : K2].

Solution: Let (α1, . . . , αn) be a K1-basis of L1, so that n = [L1 : K1]. Since ϕ
is injective, (ϕ(α1), . . . , ϕ(αn)) consists of n different elements of L2. We want to
prove that (ϕ(α1), . . . , ϕ(αn)) is a K2-basis of L2, so that [L2 : K2] = n = [L1 : K1].

For every β ∈ L2, there exists a unique α ∈ L1 such that ϕ(α) = β. Writing
α =

∑n
i=1 λiαi for λi ∈ K1. Using the fact that ϕ is a group homomorphism, we

obtain

β = ϕ(α) = ϕ

(
n∑

i=1

λiαi

)
=

n∑
i=1

ϕ(λi)ϕ(αi)

and since ϕ(λi) ∈ K2 by assumption and β is arbitrary, we have proven that
(ϕ(α1), . . . , ϕ(αn)) is a generating set.

Now let µ1, . . . , µn ∈ K2 and assume that
∑n

i=1 µiϕ(αi) = 0. Since K2 = ϕ(K1),
there exist λ1, . . . , λn ∈ K1 such that ϕ(λi) = µi for all i. Hence, using the fact
that ϕ is a field homomorphism, we obtain that

0 =
n∑

i=1

µiϕ(αi) =
n∑

i=1

ϕ(λi)ϕ(αi) = ϕ

(
n∑

i=1

λiαi

)
,

which by injectivity of ϕ implies that
∑n

i=1 λiαi = 0. Since α1, . . . , αn are linearly
independent, we obtain λi = 0 for each i, and so µi = ϕ(λi) = 0 for each i. We
conclude that the elements ϕ(α1), . . . , ϕ(αn) ∈ L2 are K2-linearly independent.

2. Let p be a prime number. By factoring Xp−1 − 1 over Fp, show that

(p− 1)! + 1 ≡ 0 (mod p).

Solution: For p = 2, the above equality is immediately checked. Assume that p is
an odd prime number.
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By Fermat’s little theorem, each x ∈ F×p satisfies xp−1 = 1, that is, x is a root of
Xp−1− 1 ∈ Fp[X], so X − x divides Xp−1− 1 in Fp[X]. Since Fp[X] is a UFD and
#F×p = p− 1 = deg(Xp−1 − 1), we conclude that

Xp−1 − 1 =
∏
x∈F×

p

(X − x).

Evaluating at 0 ∈ Fp, we obtain that 0 = 1 + (−1)p−1
∏

x∈F×
p
x = 1 +

∏
x∈F×

p
x.

Since the representatives of the x ∈ F×p can be taken to be 1, 2, . . . , p−1, we obtain
the desired equality.

3. Let f = X3 −X + 1 ∈ F3[X].

(a) Show that f is irreducible in F3[X].

(b) Show that if E is a splitting field and ρ ∈ E is a root, then so are ρ+ 1 and
ρ− 1.

(c) Construct a splitting field of f and write out its multiplication table.

(d) Write down explicitly the action of Gal(E/F3) on the elements of E.

Solution:

(a) Since f has degree 3, it is reducible if and only if it has a linear factor in F3[X],
which is equivalent to having a root in F3. But f(0) = f(1) = f(−1) = 1 so
that f has no root in F3. Hence f is irreducible in F3[X].

(b) Recall that x 7→ x3 is a field automorphism of K whenever K has character-
istic 3, which is the identity on F3. In particular, it respects the sum. Then
for ε ∈ F3 we compute

f(ρ+ ε) = (ρ+ ε)3 − (ρ+ ε) + 1 = ρ3 + ε3 − ρ− ε+ 1 = f(ρ) + ε− ε = 0.

This implies that ρ+ 1 and ρ− 1 are roots of f as well.

(c) By b), any field extension E containing a root ρ of f contains three distinct
roots of f , hence it contains all roots of f and it is the splitting field of f .
Such an extension can be obtained as

E = F3[X]/(f) ∼= {a+ bρ+ cρ2 : a, b, c ∈ F3},

where the sum on the set on the right is done by adding the coefficients
of 1, ρ, ρ2, while the product is induced by the bijection F3[X]/(f) ∼= {a +
bρ+ cρ2 : a, b, c ∈ F3} sending X 7→ ρ. That means that we can multiply two
expressions on the right as if they were polynomial in ρ, and then simplify the
obtained expression to one of “degree two” by using the condition ρ3+ρ+1 =
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0, i.e., ρ3 = −ρ − 1, which gives ρ4 = ρ(−ρ − 1) = −ρ2 − ρ as well. Hence
the multiplication rule of {a+ bρ+ cρ2 : a, b, c ∈ F3} is given by

(a+ bρ+ cρ2)(a′ + b′ρ+ c′ρ2)

= aa′ + (ab′ + a′b)ρ+ (ac′ + bb′ + ca′)ρ2 + (bc′ + cb′)ρ3 + cc′ρ4

= aa′ − bc′ − cb′ + (ab′ + a′b− bc′ − cb′ − cc′)ρ+ (ac′ + bb′ + ca′ − cc′)ρ2.

4. Let E/F/k be field extensions such that E/F and F/k are finite Galois extensions.

(a) Give an example where the extension E/k is Galois.

(b) Is E/k necessarily Galois? If not, provide a counterexample.

Solution: Let k = Q.

(a) Set F = Q(
√

2) and E = Q( 4
√

2, i). Then E/F is Galois because it is a
degree 2 extension, and E/F is Galois because E is a splitting field of the
polynomial

(X − i− 4
√

2)(X + i+
4
√

2)(X − i+
4
√

2)(X + i− 4
√

2)

= X4 + 2(1−
√

2)X + 3 + 2
√

2 ∈ F [X].

The extension E/k is Galois because it is a splitting field of X4 − 2 ∈ k[X].

(b) This is not true. Set, for example E ′ = Q( 4
√

2): The extensions E ′/F and
F/k are of degree 2, thus Galois. But E ′/k is not, because E ′ does not contain
all roots of the minimal polynomial X4 − 2 of 4

√
2 over k.
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