Solution 22

EXTENSIONS OF FINITE FIELDS, SPLITTING FIELDS

1. Let L_1/K_1 and L_2/K_2 be two field extensions and $\varphi: L_1 \longrightarrow L_2$ an isomorphism of fields such that $\varphi(K_1) = K_2$. Prove that $[L_1:K_1] = [L_2:K_2]$.

Solution: Let $(\alpha_1, \ldots, \alpha_n)$ be a K_1 -basis of L_1 , so that $n = [L_1 : K_1]$. Since φ is injective, $(\varphi(\alpha_1), \ldots, \varphi(\alpha_n))$ consists of n different elements of L_2 . We want to prove that $(\varphi(\alpha_1), \ldots, \varphi(\alpha_n))$ is a K_2 -basis of L_2 , so that $[L_2 : K_2] = n = [L_1 : K_1]$. For every $\beta \in L_2$, there exists a unique $\alpha \in L_1$ such that $\varphi(\alpha) = \beta$. Writing $\alpha = \sum_{i=1}^n \lambda_i \alpha_i$ for $\lambda_i \in K_1$. Using the fact that φ is a group homomorphism, we obtain

$$\beta = \varphi(\alpha) = \varphi\left(\sum_{i=1}^{n} \lambda_i \alpha_i\right) = \sum_{i=1}^{n} \varphi(\lambda_i)\varphi(\alpha_i)$$

and since $\varphi(\lambda_i) \in K_2$ by assumption and β is arbitrary, we have proven that $(\varphi(\alpha_1), \ldots, \varphi(\alpha_n))$ is a generating set.

Now let $\mu_1, \ldots, \mu_n \in K_2$ and assume that $\sum_{i=1}^n \mu_i \varphi(\alpha_i) = 0$. Since $K_2 = \varphi(K_1)$, there exist $\lambda_1, \ldots, \lambda_n \in K_1$ such that $\varphi(\lambda_i) = \mu_i$ for all *i*. Hence, using the fact that φ is a field homomorphism, we obtain that

$$0 = \sum_{i=1}^{n} \mu_i \varphi(\alpha_i) = \sum_{i=1}^{n} \varphi(\lambda_i) \varphi(\alpha_i) = \varphi\left(\sum_{i=1}^{n} \lambda_i \alpha_i\right),$$

which by injectivity of φ implies that $\sum_{i=1}^{n} \lambda_i \alpha_i = 0$. Since $\alpha_1, \ldots, \alpha_n$ are linearly independent, we obtain $\lambda_i = 0$ for each *i*, and so $\mu_i = \varphi(\lambda_i) = 0$ for each *i*. We conclude that the elements $\varphi(\alpha_1), \ldots, \varphi(\alpha_n) \in L_2$ are K_2 -linearly independent.

2. Let p be a prime number. By factoring $X^{p-1} - 1$ over \mathbb{F}_p , show that

$$(p-1)! + 1 \equiv 0 \pmod{p}.$$

Solution: For p = 2, the above equality is immediately checked. Assume that p is an odd prime number.

By Fermat's little theorem, each $x \in \mathbb{F}_p^{\times}$ satisfies $x^{p-1} = 1$, that is, x is a root of $X^{p-1} - 1 \in \mathbb{F}_p[X]$, so X - x divides $X^{p-1} - 1$ in $\mathbb{F}_p[X]$. Since $\mathbb{F}_p[X]$ is a UFD and $\#\mathbb{F}_p^{\times} = p - 1 = \deg(X^{p-1} - 1)$, we conclude that

$$X^{p-1} - 1 = \prod_{x \in \mathbb{F}_p^{\times}} (X - x).$$

Evaluating at $0 \in \mathbb{F}_p$, we obtain that $0 = 1 + (-1)^{p-1} \prod_{x \in \mathbb{F}_p^{\times}} x = 1 + \prod_{x \in \mathbb{F}_p^{\times}} x$. Since the representatives of the $x \in \mathbb{F}_p^{\times}$ can be taken to be $1, 2, \ldots, p-1$, we obtain the desired equality.

- 3. Let $f = X^3 X + 1 \in \mathbb{F}_3[X]$.
 - (a) Show that f is irreducible in $\mathbb{F}_3[X]$.
 - (b) Show that if E is a splitting field and $\rho \in E$ is a root, then so are $\rho + 1$ and $\rho 1$.
 - (c) Construct a splitting field of f and write out its multiplication table.
 - (d) Write down explicitly the action of $\operatorname{Gal}(E/\mathbb{F}_3)$ on the elements of E.

Solution:

- (a) Since f has degree 3, it is reducible if and only if it has a linear factor in $\mathbb{F}_3[X]$, which is equivalent to having a root in \mathbb{F}_3 . But f(0) = f(1) = f(-1) = 1 so that f has no root in \mathbb{F}_3 . Hence f is irreducible in $\mathbb{F}_3[X]$.
- (b) Recall that $x \mapsto x^3$ is a field automorphism of K whenever K has characteristic 3, which is the identity on \mathbb{F}_3 . In particular, it respects the sum. Then for $\varepsilon \in \mathbb{F}_3$ we compute

$$f(\rho + \varepsilon) = (\rho + \varepsilon)^3 - (\rho + \varepsilon) + 1 = \rho^3 + \varepsilon^3 - \rho - \varepsilon + 1 = f(\rho) + \varepsilon - \varepsilon = 0.$$

This implies that $\rho + 1$ and $\rho - 1$ are roots of f as well.

(c) By b), any field extension E containing a root ρ of f contains three distinct roots of f, hence it contains all roots of f and it is the splitting field of f. Such an extension can be obtained as

$$E = \mathbb{F}_3[X]/(f) \cong \{a + b\rho + c\rho^2 : a, b, c \in \mathbb{F}_3\},\$$

where the sum on the set on the right is done by adding the coefficients of $1, \rho, \rho^2$, while the product is induced by the bijection $\mathbb{F}_3[X]/(f) \cong \{a + b\rho + c\rho^2 : a, b, c \in \mathbb{F}_3\}$ sending $X \mapsto \rho$. That means that we can multiply two expressions on the right as if they were polynomial in ρ , and then simplify the obtained expression to one of "degree two" by using the condition $\rho^3 + \rho + 1 =$ 0, i.e., $\rho^3 = -\rho - 1$, which gives $\rho^4 = \rho(-\rho - 1) = -\rho^2 - \rho$ as well. Hence the multiplication rule of $\{a + b\rho + c\rho^2 : a, b, c \in \mathbb{F}_3\}$ is given by

$$\begin{aligned} &(a+b\rho+c\rho^2)(a'+b'\rho+c'\rho^2) \\ &=aa'+(ab'+a'b)\rho+(ac'+bb'+ca')\rho^2+(bc'+cb')\rho^3+cc'\rho^4 \\ &=aa'-bc'-cb'+(ab'+a'b-bc'-cb'-cc')\rho+(ac'+bb'+ca'-cc')\rho^2. \end{aligned}$$

- 4. Let E/F/k be field extensions such that E/F and F/k are finite Galois extensions.
 - (a) Give an example where the extension E/k is Galois.
 - (b) Is E/k necessarily Galois? If not, provide a counterexample.

Solution: Let $k = \mathbb{Q}$.

(a) Set $F = \mathbb{Q}(\sqrt{2})$ and $E = \mathbb{Q}(\sqrt[4]{2}, i)$. Then E/F is Galois because it is a degree 2 extension, and E/F is Galois because E is a splitting field of the polynomial

$$(X - i - \sqrt[4]{2})(X + i + \sqrt[4]{2})(X - i + \sqrt[4]{2})(X + i - \sqrt[4]{2})$$

= X⁴ + 2(1 - \sqrt{2})X + 3 + 2\sqrt{2} \in F[X].

The extension E/k is Galois because it is a splitting field of $X^4 - 2 \in k[X]$.

(b) This is not true. Set, for example $E' = \mathbb{Q}(\sqrt[4]{2})$: The extensions E'/F and F/k are of degree 2, thus Galois. But E'/k is not, because E' does not contain all roots of the minimal polynomial $X^4 - 2$ of $\sqrt[4]{2}$ over k.