Prof. Rahul Pandharipande

Solution 23

Solvability by Radicals. Recap.

1. Prove that the groups S_{2}, S_{3} and S_{4} are solvable.

Solution: The group S_{2} is commutative, hence solvable by definition, because we can consider the chain of normal subgroups $1 \triangleleft S_{2}$.
The group S_{3} contains the normal subgroup A_{3} of index 2 . Hence the quotient group S_{3} / A_{3} has cardinality 2 so that it is cyclic and hence abelian. Since A_{3} is abelian, too (it is cyclic of cardinality 3), S_{3} is solvable by considering the chain of normal subgroups $1 \triangleleft A_{3} \triangleleft S_{3}$.
The group S_{4} contains the normal subgroup A_{4} of index 2 , so that S_{4} / A_{4} is commutative. In A_{4}, which has $4!/ 2=12$ elements, there is a subgroup of 4 elements $V_{4}=\{\mathrm{id},(12)(34),(13)(24),(12)(34)\}$. We claim that V_{4} is isomorphic to the Klein four-group. Its elements are indeed of order 2 , so they coincide with their inverses. Moreover, the product of two non-trivial elements in V_{4} coincides with the remaining non-trivial element, proving that the claim (i.e., $V_{4} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$). Since V_{4} contains all permutations of cyclic type $1+1+1+1$ and $2+2$, it is a normal subgroup of S_{4} and hence of A_{4}. Moreover, A_{4} / V_{4} has three elements, so it is an abelian group. Finally, V_{4} is abelian since it is isomorphic to the Klein four-group; hence S_{4} is solvable via $1 \triangleleft V_{4} \triangleleft A_{4} \triangleleft S_{4}$.
2. Let k be a field and $n=2 d$ a positive even integer. Let $f=\sum_{j=0}^{n} a_{j} X^{j} \in k[X]$ be a monic polynomial of degree n without multiple roots and suppose that f has no root in k. Suppose moreover that f is palindromic, that is, $a_{j}=a_{n-j}$ for each $j \in\{0, \ldots, d\}$. Let E be the splitting field of f.
(a) Prove that $x \mapsto \frac{1}{x}$ is a well-defined bijection on the set of roots of f.
(b) Deduce that $\# \operatorname{Gal}(E / k)$ divides $2^{d} d$!.

Solution:

(a) Let $x \in E$ be a root of f, so $0=f(x)=\sum_{j=0}^{n} a_{j} x^{j}$. We know that $x \neq 0$ because f has no root in k, so x admits an inverse $1 / x$ in E. We deduce that

$$
f(1 / x)=\sum_{j=0}^{n} a_{j} \frac{1}{x^{j}}=\frac{1}{x^{n}} \sum_{j=0}^{n} a_{j} x^{n-j} \stackrel{a_{j}=a_{n-j}}{=} \frac{1}{x^{n}} \sum_{j=0}^{n} a_{n-j} x^{n-j}=\frac{1}{x^{n}} f(x)=0,
$$

thus $x \mapsto \frac{1}{x}$ is a well-defined map on the set S of roots of f. Since this map is its own inverse, it is a bijection.
(b) By assumption, f has $n=2 d$ distinct roots. Since the map $x \mapsto 1 / x$ is an involution with fixed points $\pm 1 \in k$ and those are not roots of f by assumption, the set S is the union of d orbits of 2 elements under the action of $\mathbb{Z} / 2 \mathbb{Z}$ on it generated by $x \mapsto \frac{1}{x}$. This means that $S=\left\{x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right\}$ for some distinct x_{1}, \ldots, x_{d} in \bar{k} with $x_{i} \neq \frac{1}{x_{j}}$ for each i and j.
The Galois group $\operatorname{Gal}(E / k)$ embeds into $S_{2 d}$ via its action on S, explicitly so by setting $x_{i+d}:=x_{i}^{-1}$ for $i \in\{1, \ldots, d\}$ and mapping $\sigma \in \operatorname{Gal}(E / k)$ to $\tau_{\sigma} \in S_{2 d}$ determined by $\sigma\left(x_{i}\right)=x_{\tau_{\sigma}(i)}$. Moreover, for $\sigma \in \operatorname{Gal}(E / k)$ we know that $\sigma\left(x_{i}^{-1}\right)=\left(\sigma\left(x_{i}\right)\right)^{-1}$. So for each $i \in\{1, \ldots, d\}$ there exists a unique $j \in\{1, \ldots, d\}$ with $\sigma\left(\left\{x_{i}, x_{i}^{-1}\right\}\right)=\left\{x_{j}, x_{j}^{-1}\right\}$.
In terms of the embedding into $S_{2 d}$, this translates to saying that the image of $\operatorname{Gal}(E / k)$ in $S_{2 d}$ lies in the subset
$W_{d}:=\left\{\tau \in S_{2 d}: \exists \tau^{\prime} \in S_{d}: \forall i \in\{1, \ldots, d\}, \tau(\{i, i+d\})=\left\{\tau^{\prime}(i), \tau^{\prime}(i)+d\right\}\right\}$,
that is, the subsets of permutations of $\{1, \ldots, 2 d\}$ respecting the partition $\{1, d+1\},\{2, d+2\}, \ldots,\{d, 2 d\}$. Since this property is stable under composition and inversion, the subset W_{d} is actually a subgroup of $S_{2 d}$. Hence the image of $\operatorname{Gal}(E / k)$ under its embedding into $S_{2 d}$ is a subgroup of W_{d}, so $\# \operatorname{Gal}(E / k)$ divides $\# W_{d}$. For each $\tau \in W_{d}$, the associated $\tau^{\prime} \in S_{d}$ in the definition of W_{d} is uniquely determined. On the other hand, for each $\tau^{\prime} \in S_{d}$, there are 2^{d} permutations τ associated τ^{\prime}, because for each $i \in\{1, \ldots, d\}$ we have two ways to map $\{i, i+d\}$ onto $\left\{\tau^{\prime}(i), \tau^{\prime}(i)+d\right\}$. Hence we conclude that

$$
\# \operatorname{Gal}(E / k) \mid \# W_{d}=d!\cdot 2^{d}
$$

as desired.
3. For each of the following polynomials, determine the Galois group of its splitting field:
(a) $X^{4}+2 X^{3}+X^{2}+2 X+1 \in \mathbb{Q}[X] \quad$ Hint. Exercise 2
(b) $X^{4}+X+1 \in \mathbb{F}_{2}[X]$
(c) $X^{5}+\frac{5}{4} X^{4}-\frac{5}{21} \in \mathbb{Q}[X]$

Hint. Show that the polynomial has precisely three real roots and deduce that the Galois group contains a transposition and a 5-cycle.
(d) $X^{81}-t \in \mathbb{F}_{3}(t)[X]$

Solution:
(a) The polynomial $f=X^{4}+2 X^{3}+X^{2}+2 X+1 \in \mathbb{Q}[X]$ has no root in \mathbb{Q} : If it did, it would have a root in \mathbb{Z}. Since the product of the roots is 1 (the constant coefficient), this root would have to be a unit in \mathbb{Z}, i.e. ± 1. But $f(\pm 1) \neq 0$. We compute its roots in \mathbb{C} by using Exercise 2(a). If $x \in \mathbb{C}$ is a root of f, then so is x^{-1} because f is palindromic. Since $x \neq \pm 1$, we know that $x^{-1} \neq x$. Hence the roots of f in \mathbb{C} are given by $a_{1}, a_{1}^{-1}, a_{2}, a_{2}^{-1}$ for some $a_{1}, a_{2} \in \mathbb{C}$. Since $\left(X-a_{j}\right)\left(X-a_{j}^{-1}\right)=X^{2}-\left(a_{j}+a_{j}^{-1}\right) X+1$ for $j=1,2$, we can define $\alpha_{j}:=-\left(a_{j}+a_{j}^{-1}\right)$ which lets us write down the decomposition

$$
X^{4}+2 X^{3}+X^{2}+2 X+1=f=\left(X^{2}+\alpha_{1} X+1\right)\left(X^{2}+\alpha_{2} X+1\right)
$$

Comparing the coefficients in this equality we obtain the system of equations

$$
\left\{\begin{array}{l}
\alpha_{1}+\alpha_{2}=2 \\
\alpha_{1} \alpha_{2}+2=1
\end{array}\right.
$$

Hence α_{1} and α_{2} are the two solutions of the equation $\alpha^{2}-2 \alpha-1=0$, so

$$
\alpha_{1,2}=1 \pm \sqrt{1+1}=1 \pm \sqrt{2} .
$$

Therefore, f is irreducible over \mathbb{Q} because its quadratic factors do not lie in $\mathbb{Q}[X]$ and it has no rational roots. The roots of f are precisely the solutions of the two equations $x^{2}+(1 \pm \sqrt{2}) x+1=0$; hence
$a_{1}=-\frac{1}{2}(1+\sqrt{2}-\sqrt{2 \sqrt{2}-1}) \quad$ and $\quad a_{2}=-\frac{1}{2}(1-\sqrt{2}-i \sqrt{2 \sqrt{2}+1})$.
There are four distinct roots (two real and two complex ones) and we can apply Exercise 2(b) which tells us that $|\operatorname{Gal}(E / \mathbb{Q})|$ divides $2^{2} \cdot 2!=8$, where E is the splitting field of f. Since E contains a_{1}, the splitting field of f contains the field extension $\mathbb{Q}\left(a_{1}\right)$ of \mathbb{Q}. This containment is strict because the roots of f are not all real, while $\mathbb{Q}\left(a_{1}\right) \subset \mathbb{R}$. This means that $4<|\operatorname{Gal}(E / \mathbb{Q})|$. The only remaining possibility is that $|\operatorname{Gal}(E / \mathbb{Q})|=8$.
By the proof in Exercise 2, this means that $\operatorname{Gal}(E / \mathbb{Q})$, seen as a subgroup of S_{4}, is precisely the subgroup W_{2}. Note that W_{2} contains the permutations $\sigma=(1234)$ and $\tau=(13)$ because of the relations $\sigma(\{i, i+2\})=\{\sigma(i), \sigma(i)+2\}$ and $\tau(\{i, i+2\})=\{\operatorname{id}(i), \operatorname{id}(i)+2\}$ for $i=1,2$. Thus $\operatorname{Gal}(E / \mathbb{Q})=W_{2}$ contains the subgroup $\langle\sigma, \tau\rangle$, which is isomorphic to the dihedral group D_{4} of order 8 . Hence, by cardinality we have $\operatorname{Gal}(E / \mathbb{Q}) \cong D_{4}$.
(b) The polynomial $X^{4}+X+1 \in \mathbb{F}_{2}[X]$ is irreducible in $\mathbb{F}_{2}[X]$, as we found out in Assignment 15, Exercise 3. Let $x \in \overline{\mathbb{F}_{2}}$ be a root of f. Then the other roots of f are powers of x, as shown in Exercise 2, Assignment 13, so $E:=\mathbb{F}_{2}(x)$ is the splitting field of f. The same equality can be obtained by noting that $\mathbb{F}_{2}(x)$ is a finite field of 2^{4} elements and thus the splitting field of
$X^{16}-X \in \mathbb{F}_{2}[X]$. Since it is moreover galois, it must contains all roots of f by Assignment 19, Exercise 3. Hence

$$
\operatorname{Gal}\left(E / \mathbb{F}_{2}\right)=\operatorname{Gal}\left(\mathbb{F}_{16} / \mathbb{F}_{2}\right)=\mathbb{Z} / 4 \mathbb{Z}
$$

by Assignment 17, Exercise 3.
(c) The polynomial $f=X^{5}+\frac{5}{4} X^{4}-\frac{5}{21} \in \mathbb{Q}[X]$ is irreducible if and only if the associated primitive polynomial $4 \cdot 21 f=4 \cdot 21 X^{5}+5 \cdot 21 X^{4}-5 \cdot 4 \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Z}[X]$, which is the case by Eisenstein's Lemma (for $p=5$).
The derivative of the associated real function $x \mapsto f(x)$ is $f^{\prime}(x)=5 x^{4}+5 x^{3}$, which is positive for $x<-1$ and $x>0$, negative for $-1<x<0$ and zero on -1 and 0 . Hence -1 is a local maximum while 0 is a local minimum. We compute the values of f on those stationary points:

$$
\begin{aligned}
f(-1) & =-1+\frac{5}{4}-\frac{5}{21}=\frac{1}{4}-\frac{5}{21}>\frac{1}{4}-\frac{5}{20}=0 \\
f(0) & =-\frac{5}{21}<0 .
\end{aligned}
$$

This shows us that f has precisely three real roots: one in $(-\infty,-1)$, one in $(-1,0)$ and $(0,+\infty)$. We claim that the Galois group $G:=\operatorname{Gal}(E / \mathbb{Q})$ contains a transposition and an element of order 5 . Since 5 is a prime number, this implies that $G \cong S_{5}$. We know that f has three real roots α_{3}, α_{4} and α_{5}; thus the remaining two α_{1} and α_{2} are complex conjugates. Consider G as a subgroup of S_{5}. The complex conjugation $\sigma: \mathbb{C} \rightarrow \mathbb{C}, x \mapsto \bar{x}$ leaves α_{3}, α_{4} and α_{5} fixed and interchanges α_{1} and α_{2}. Since $E=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{5}\right)$ this implies that $\sigma(E)=E$ and that $\left.\sigma\right|_{E} \in G<S_{5}$ is the transposition $(1,2)$. Since f is irreducible, we know that $\operatorname{deg} f=5$ divides $|G|$. It follows that G contains a 5 -cycle, and we conclude that $\operatorname{Gal}(E / \mathbb{Q}) \cong S_{5}$.
(d) Let $u \in \overline{\mathbb{F}_{3}(t)}$ be a root of $f=X^{81}-t$. Then $u^{81}=t$ and

$$
(X-u)^{81}=\left((X-u)^{3}\right)^{27}=\left(X^{3}-u^{3}\right)^{27}=\cdots=X^{81}-u^{81}=X^{81}-t
$$

Hence u is the only root of f in $\overline{\mathbb{F}_{3}(t)}$ so $E=\mathbb{F}_{3}(t)(u)$ is the splitting field of f. In particular, f and hence E are not separable, so the extension is not Galois. (Since an $\mathbb{F}_{3}(t)$-automorphism of $\mathbb{F}_{3}(t)(u)$ is uniquely determined by the image of u, which in turn needs to be a root of f, the automorphism $\operatorname{group} \operatorname{Aut}\left(E / \mathbb{F}_{3}(t)\right)$ is in fact trivial.)

