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Solution 23
Solvability by Radicals. Recap.

1. Prove that the groups S2, S3 and S4 are solvable.

Solution: The group S2 is commutative, hence solvable by definition, because we
can consider the chain of normal subgroups 1 C S2.

The group S3 contains the normal subgroup A3 of index 2. Hence the quotient
group S3/A3 has cardinality 2 so that it is cyclic and hence abelian. Since A3 is
abelian, too (it is cyclic of cardinality 3), S3 is solvable by considering the chain
of normal subgroups 1 C A3 C S3.

The group S4 contains the normal subgroup A4 of index 2, so that S4/A4 is com-
mutative. In A4, which has 4!/2 = 12 elements, there is a subgroup of 4 elements
V4 = {id, (1 2)(3 4), (1 3)(2 4), (1 2)(3 4)}. We claim that V4 is isomorphic to the
Klein four-group. Its elements are indeed of order 2, so they coincide with their in-
verses. Moreover, the product of two non-trivial elements in V4 coincides with the
remaining non-trivial element, proving that the claim (i.e., V4 ∼= Z/2Z × Z/2Z).
Since V4 contains all permutations of cyclic type 1 + 1 + 1 + 1 and 2 + 2, it is a
normal subgroup of S4 and hence of A4. Moreover, A4/V4 has three elements, so
it is an abelian group. Finally, V4 is abelian since it is isomorphic to the Klein
four-group; hence S4 is solvable via 1 C V4 C A4 C S4.

2. Let k be a field and n = 2d a positive even integer. Let f =
∑n

j=0 ajX
j ∈ k[X]

be a monic polynomial of degree n without multiple roots and suppose that f has
no root in k. Suppose moreover that f is palindromic, that is, aj = an−j for each
j ∈ {0, . . . , d}. Let E be the splitting field of f .

(a) Prove that x 7→ 1
x

is a well-defined bijection on the set of roots of f .

(b) Deduce that # Gal(E/k) divides 2dd!.

Solution:

(a) Let x ∈ E be a root of f , so 0 = f(x) =
∑n

j=0 ajx
j. We know that x 6= 0

because f has no root in k, so x admits an inverse 1/x in E. We deduce that

f(1/x) =
n∑
j=0

aj
1

xj
=

1

xn

n∑
j=0

ajx
n−j aj=an−j=

1

xn

n∑
j=0

an−jx
n−j =

1

xn
f(x) = 0,
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thus x 7→ 1
x

is a well-defined map on the set S of roots of f . Since this map
is its own inverse, it is a bijection.

(b) By assumption, f has n = 2d distinct roots. Since the map x 7→ 1/x is
an involution with fixed points ±1 ∈ k and those are not roots of f by
assumption, the set S is the union of d orbits of 2 elements under the action
of Z/2Z on it generated by x 7→ 1

x
. This means that S = {x±11 , . . . , x±1d } for

some distinct x1, . . . , xd in k with xi 6= 1
xj

for each i and j.

The Galois group Gal(E/k) embeds into S2d via its action on S, explicitly
so by setting xi+d := x−1i for i ∈ {1, . . . , d} and mapping σ ∈ Gal(E/k) to
τσ ∈ S2d determined by σ(xi) = xτσ(i). Moreover, for σ ∈ Gal(E/k) we know
that σ(x−1i ) = (σ(xi))

−1. So for each i ∈ {1, . . . , d} there exists a unique
j ∈ {1, . . . , d} with σ({xi, x−1i }) = {xj, x−1j }.
In terms of the embedding into S2d, this translates to saying that the image
of Gal(E/k) in S2d lies in the subset

Wd := {τ ∈ S2d : ∃τ ′ ∈ Sd : ∀i ∈ {1, . . . , d}, τ({i, i+ d}) = {τ ′(i), τ ′(i) + d}},

that is, the subsets of permutations of {1, . . . , 2d} respecting the partition
{1, d + 1}, {2, d + 2}, . . . , {d, 2d}. Since this property is stable under com-
position and inversion, the subset Wd is actually a subgroup of S2d. Hence
the image of Gal(E/k) under its embedding into S2d is a subgroup of Wd, so
# Gal(E/k) divides #Wd. For each τ ∈ Wd, the associated τ ′ ∈ Sd in the
definition of Wd is uniquely determined. On the other hand, for each τ ′ ∈ Sd,
there are 2d permutations τ associated τ ′, because for each i ∈ {1, . . . , d} we
have two ways to map {i, i + d} onto {τ ′(i), τ ′(i) + d}. Hence we conclude
that

# Gal(E/k) | #Wd = d! · 2d,

as desired.

3. For each of the following polynomials, determine the Galois group of its splitting
field:

(a) X4 + 2X3 +X2 + 2X + 1 ∈ Q[X] Hint. Exercise 2

(b) X4 +X + 1 ∈ F2[X]

(c) X5 + 5
4
X4 − 5

21
∈ Q[X]

Hint. Show that the polynomial has precisely three real roots and deduce that the

Galois group contains a transposition and a 5-cycle.

(d) X81 − t ∈ F3(t)[X]

Solution:
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(a) The polynomial f = X4 + 2X3 + X2 + 2X + 1 ∈ Q[X] has no root in Q: If
it did, it would have a root in Z. Since the product of the roots is 1 (the
constant coefficient), this root would have to be a unit in Z, i.e. ±1. But
f(±1) 6= 0. We compute its roots in C by using Exercise 2(a). If x ∈ C is a
root of f , then so is x−1 because f is palindromic. Since x 6= ±1, we know
that x−1 6= x. Hence the roots of f in C are given by a1, a

−1
1 , a2, a

−1
2 for some

a1, a2 ∈ C. Since (X − aj)(X − a−1j ) = X2− (aj + a−1j )X + 1 for j = 1, 2, we

can define αj := −(aj + a−1j ) which lets us write down the decomposition

X4 + 2X3 +X2 + 2X + 1 = f = (X2 + α1X + 1)(X2 + α2X + 1).

Comparing the coefficients in this equality we obtain the system of equations{
α1 + α2 = 2
α1α2 + 2 = 1

Hence α1 and α2 are the two solutions of the equation α2 − 2α− 1 = 0, so

α1,2 = 1±
√

1 + 1 = 1±
√

2.

Therefore, f is irreducible over Q because its quadratic factors do not lie in
Q[X] and it has no rational roots. The roots of f are precisely the solutions
of the two equations x2 + (1±

√
2)x+ 1 = 0; hence

a1 = −1

2

(
1 +
√

2−
√

2
√

2− 1

)
and a2 = −1

2

(
1−
√

2− i
√

2
√

2 + 1

)
.

There are four distinct roots (two real and two complex ones) and we can
apply Exercise 2(b) which tells us that |Gal(E/Q)| divides 22 ·2! = 8, where E
is the splitting field of f . Since E contains a1, the splitting field of f contains
the field extension Q(a1) of Q. This containment is strict because the roots
of f are not all real, while Q(a1) ⊂ R. This means that 4 < |Gal(E/Q)|. The
only remaining possibility is that |Gal(E/Q)| = 8.

By the proof in Exercise 2, this means that Gal(E/Q), seen as a subgroup of
S4, is precisely the subgroup W2. Note that W2 contains the permutations
σ = (1234) and τ = (13) because of the relations σ({i, i+2}) = {σ(i), σ(i)+2}
and τ({i, i + 2}) = {id(i), id(i) + 2} for i = 1, 2. Thus Gal(E/Q) = W2

contains the subgroup < σ, τ >, which is isomorphic to the dihedral group
D4 of order 8. Hence, by cardinality we have Gal(E/Q) ∼= D4.

(b) The polynomial X4 + X + 1 ∈ F2[X] is irreducible in F2[X], as we found
out in Assignment 15, Exercise 3. Let x ∈ F2 be a root of f . Then the
other roots of f are powers of x, as shown in Exercise 2, Assignment 13, so
E := F2(x) is the splitting field of f . The same equality can be obtained by
noting that F2(x) is a finite field of 24 elements and thus the splitting field of
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X16 −X ∈ F2[X]. Since it is moreover galois, it must contains all roots of f
by Assignment 19, Exercise 3. Hence

Gal(E/F2) = Gal(F16/F2) = Z/4Z

by Assignment 17, Exercise 3.

(c) The polynomial f = X5 + 5
4
X4 − 5

21
∈ Q[X] is irreducible if and only if the

associated primitive polynomial 4 · 21f = 4 · 21X5 + 5 · 21X4 − 5 · 4 ∈ Z[X]
is irreducible in Z[X], which is the case by Eisenstein’s Lemma (for p = 5).

The derivative of the associated real function x 7→ f(x) is f ′(x) = 5x4 + 5x3,
which is positive for x < −1 and x > 0, negative for −1 < x < 0 and zero
on −1 and 0. Hence −1 is a local maximum while 0 is a local minimum. We
compute the values of f on those stationary points:

f(−1) = −1 +
5

4
− 5

21
=

1

4
− 5

21
>

1

4
− 5

20
= 0

f(0) = − 5

21
< 0.

This shows us that f has precisely three real roots: one in (−∞,−1), one
in (−1, 0) and (0,+∞). We claim that the Galois group G := Gal(E/Q)
contains a transposition and an element of order 5. Since 5 is a prime number,
this implies that G ∼= S5. We know that f has three real roots α3, α4 and
α5; thus the remaining two α1 and α2 are complex conjugates. Consider G
as a subgroup of S5. The complex conjugation σ : C → C, x 7→ x̄ leaves α3,
α4 and α5 fixed and interchanges α1 and α2. Since E = Q(α1, . . . , α5) this
implies that σ(E) = E and that σ|E ∈ G < S5 is the transposition (1, 2).
Since f is irreducible, we know that deg f = 5 divides |G|. It follows that G
contains a 5-cycle, and we conclude that Gal(E/Q) ∼= S5.

(d) Let u ∈ F3(t) be a root of f = X81 − t. Then u81 = t and

(X − u)81 = ((X − u)3)27 = (X3 − u3)27 = · · · = X81 − u81 = X81 − t.

Hence u is the only root of f in F3(t) so E = F3(t)(u) is the splitting field
of f . In particular, f and hence E are not separable, so the extension is not
Galois. (Since an F3(t)-automorphism of F3(t)(u) is uniquely determined by
the image of u, which in turn needs to be a root of f , the automorphism
group Aut(E/F3(t)) is in fact trivial.)
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