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Solution 24

Cyclotomic extensions.

1. Let ϕ : Z>1 −→ Z>0 be the Euler function ϕ(n) = #(Z/nZ)×. Prove the following
properties of the cyclotomic polynomials

Φn :=
∏

a∈(Z/nZ)×

(
T − e

2πi
n
a
)
∈ Z[T ].

(a) Φn(T ) = Tϕ(n)Φn

(
1
T

)
for every integer n > 2.

(b) Φp(T ) = T p−1 + · · ·+ 1 for every prime number p.

(c) Φpr(T ) = Φp(T
pr−1

) for every prime number p and integer r > 1.

(d) Φ2n(T ) = Φn(−T ) for every odd integer n > 1.

Solution:

(a) We already know that ϕ(n) = deg(Φn). Write Φn(T ) =
∑ϕ(n)

j=0 ajT
j. Then

Tϕ(n)Φn

(
1
T

)
= Tϕ(n)

ϕ(n)∑
j=0

ajT
−j =

ϕ(n)∑
j=0

ajT
ϕ(n)−j ∈ Z[T ]

is also a polynomial of degree ϕ(n). Let µn denote the set of n-th roots of
unity. Note that for each a ∈ µn we have a−1 ∈ µn, so

aϕ(n)Φn

(
1
a

)
= 1 · 0 = 0.

Hence the set of roots of Tϕ(n)Φn

(
1
T

)
is precisely µn, which is the set of roots

of Φn. Since the two polynomials have the same degree and Φn has distinct
roots, they must coincide.

(b) See Assignment 11, Exercise 4.

(c) Since µn is the disjoint union of the set of primitive d-th roots of unity for
each divisor d | n, we obtain the equality

T n − 1 =
∏
d|n

Φd(T ).
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For n = pr this reads as

T p
r − 1 =

r∏
m=0

Φpm .

Hence, by induction on r,

Φpr(T ) =
T p

r − 1∏r−1
m=0 Φpm

=
T p

r − 1

T pr−1 − 1
=

(T p
r−1

)p − 1

T pr−1 − 1
= Φp(T

pr−1

).

(d) Since 2 and n are coprime by assumption, we have ϕ(2n) = ϕ(2)ϕ(n) = ϕ(n),
so the two given polynomials have the same degree. If ζ is a primitive 2n-th
root of unity, then ordC×(ζn) = 2, so ζn = −1. In particular, since n is odd,
we get (−ζ)n = −ζn = 1, so −ζ is an n-th root of unity. It must be a primitive
n-th root of unity, because if (−ζ)m = 1 for m < n, then ζ2m = (−ζ)2m = 1
which contradicts the fact that ζ is a primitive 2n-th root of unity. Hence
the roots of Φn are precisely ± roots of Φ2n, so

Φn(T ) =
∏

Φn(ζ)=0

(T − ζ) =
∏

Φ2n(ζ)=0

(T + ζ) = (−1)ϕ(2n)
∏

Φ2n(ζ)=0

(−T − ζ)

= (−1)ϕ(2n)Φ2n(−T ).

In order to conclude, we need to prove that ϕ(2n) is even for n odd. As
already noticed, ϕ(2n) = ϕ(n) in this case. Decomposing n into a product of
prime powers (this product is nonempty for n > 1) and using the fact that
ϕ(ab) = ϕ(a)ϕ(b) when a and b are coprime1, we see that it is enough to check
that ϕ(pr) is even for each odd prime p and r > 1. But this is immediate
from the formula ϕ(pr) = pr − pr−1.

2. Let p be an odd prime number and r > 2 an integer. The goal of this exercise is
to show that there is an isomorphism of abelian groups

(Z/prZ)× ∼= Z/pr−1Z× Z/(p− 1)Z.

(a) Explain why the statement is equivalent to proving that (Z/prZ)× is cyclic.

(b) Show that there exists g ∈ Z which generates (Z/pZ)× with gp−1 6≡ 1 mod p2.

Hint. Let g be a generator of (Z/pZ)×. Look at (g+p)p−1 modulo p2 and eventually

replace g with g + p.

1By the Chinese Remainder Theorem, Z/abZ ∼= Z/aZ × Z/bZ as rings, so they have isomorphic
groups of units. Moreover, an element (x, y) ∈ Z/aZ × Z/bZ is invertible if and only if both x and y
are. This yields an isomorphism (Z/abZ)× ∼= (Z/aZ)× × (Z/bZ)× from which we can deduce that
ϕ(ab) = |(Z/abZ)×| = |(Z/aZ)×| · |(Z/bZ)×| = ϕ(a)ϕ(b).
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(c) For g as in (b), show that gp
r−2(p−1) 6≡ 1 mod pr by proving inductively that

there exist integers k1, k2, . . . , kr−1 ∈ Z for which

gp
j−1(p−1) = 1 + kjp

j and p - kj.

(d) Explain why ord(Z/prZ)×(g) divides pr−1(p− 1).

(e) Suppose that gp
εd ≡ 1 mod pr for some integer ε > 1 and a proper divisor d

of p− 1. Deduce that gd ≡ 1 mod p and derive a contradiction.

(f) Conclude that g is a generator of (Z/prZ)×.

Solution:

(a) Since p−1 and pr are coprime, the group Z/pr−1Z×Z/(p−1)Z is isomorphic
to the cyclic group Z/pr−1(p − 1)Z. The cardinality of the latter group is
pr−1(p − 1) = pr − pr−1 = ϕ(pr) = |(Z/prZ)×|. Thus to prove the given
statement, it suffices to show that (Z/prZ)× is cyclic.

(b) As seen in Algebra I, the group F×p = (Z/pZ)× is cyclic. Let g ∈ Z be
a representative of a generator of (Z/pZ)×. If gp−1 6≡ 1 mod p2, then we
are done. So assume that gp−1 ≡ 1 mod p2. Expanding the binomial power
(g + p)p−1 as suggested in the hint, we see that

(g + p)p−1 = gp−1 + (p− 1)gp−2p+ p2m, for some m ∈ Z.

Hence (g + p)p−1 ≡ gp−1 − gp−2p mod p2. Since gp−1 ≡ 1 mod p2 by assump-
tion, we see that

(g + p)p−1 ≡ 1− gp−2p mod p2.

Since p - g, we have p - gp−2; hence p2 - gp−2p and (g + p)p−1 6≡ 1 mod p2.
Moreover, g + p is also a generator because it represents the same class as g
in Z/pZ. Thus g + p satisfies the desired properties.

(c) For j = 1, we know by the previous step that there exists a k1 with

g1·(p−1) = 1 + k1p, p - k1,

because gp−1 ≡ 1 mod p and gp−1 6≡ 1 mod p2. Now suppose that for j > 2
we have already found kj−1 with gp

j−2(p−1) = 1 + kj−1p
j−1 and p - kj−1. Then

gp
j−1(p−1) = (gp

j−2(p−1))p = (1 + kj−1p
j−1)p

(∗)
= 1 + p · kj−1p

j−1 + p2j−1mj

= 1 + (kj−1 + pj−1mj)p
j

for some integer mj. In the equality (∗) we used the fact that p divides the
binomial coefficients

(
p
k

)
for 0 < k < p. Then kj := kj−1 + pj−1mj is not
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divisible by p because kj−1 is not while p | pj−1mj for j > 2. This proves the
induction step. For j = r − 1, we thus obtain

gp
r−2(p−1) = 1 + kr−1p

r−1

where p - kr−1, which implies that gp
r−2(p−1) 6≡ 1 mod pr.

(d) The order of g in (Z/prZ)× divides the cardinality of the group, which is
precisely ϕ(pr) = pr−1(p− 1).

(e) Under the given assumption, reducing modulo p and applying Fermat’s little
theorem which asserts that gp ≡ g (mod p), we obtain gd ≡ 1 modulo p,
contrary to the fact that g is a generator of (Z/pZ)×.

(f) By Part (d), the order of g in (Z/prZ)× is a divisor of pr−1(p − 1). Using
Part (e), we thus find that it must be of the form pε · (p − 1). On the
other hand, the fact that gp

r−2(p−1) 6≡ 1 mod pr from Part (c) means that the
order of g in (Z/prZ)× does not divide pr−2(p − 1). So the only possibility
is that ord(Z/prZ)×(g) = pr−1(p − 1) = |(Z/prZ)×|. Hence g is a generator of
(Z/prZ)×.

3. Let n be a positive integer and p - n a prime number. Show that the irreducible
factors of Φn ∈ Fp[X] are all distinct with degree equal to the order of p in (Z/nZ)×.

Hint. Prove that if α is a root of Φn, then α is a primitive root of unity.

Solution: See Theorem IV.34 in Prof. Burger’s notes on the website.

4. Show that for any n ∈ Z>0 there are infinitely many primes p with p ≡ 1 mod n.

Hint. If one such prime p exists, then one can find a prime p′ > p with p′ ≡ 1 mod (n ·p).

Solution: See Theorem IV.35 in Prof. Burger’s notes on the website.
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