D-MATH Prof. Rahul Pandharipande

Solution 24

CYCLOTOMIC EXTENSIONS.

1. Let $\varphi : \mathbb{Z}_{\geq 1} \longrightarrow \mathbb{Z}_{\geq 0}$ be the Euler function $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$. Prove the following properties of the cyclotomic polynomials

$$\Phi_n := \prod_{a \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \left(T - e^{\frac{2\pi i}{n}a} \right) \in \mathbb{Z}[T].$$

- (a) $\Phi_n(T) = T^{\varphi(n)} \Phi_n\left(\frac{1}{T}\right)$ for every integer $n \ge 2$.
- (b) $\Phi_p(T) = T^{p-1} + \dots + 1$ for every prime number p.
- (c) $\Phi_{p^r}(T) = \Phi_p(T^{p^{r-1}})$ for every prime number p and integer $r \ge 1$.
- (d) $\Phi_{2n}(T) = \Phi_n(-T)$ for every **odd** integer n > 1.

Solution:

(a) We already know that $\varphi(n) = \deg(\Phi_n)$. Write $\Phi_n(T) = \sum_{j=0}^{\varphi(n)} a_j T^j$. Then

$$T^{\varphi(n)}\Phi_n\left(\frac{1}{T}\right) = T^{\varphi(n)}\sum_{j=0}^{\varphi(n)}a_jT^{-j} = \sum_{j=0}^{\varphi(n)}a_jT^{\varphi(n)-j} \in \mathbb{Z}[T]$$

is also a polynomial of degree $\varphi(n)$. Let μ_n denote the set of *n*-th roots of unity. Note that for each $a \in \mu_n$ we have $a^{-1} \in \mu_n$, so

$$a^{\varphi(n)}\Phi_n\left(\frac{1}{a}\right) = 1 \cdot 0 = 0.$$

Hence the set of roots of $T^{\varphi(n)}\Phi_n\left(\frac{1}{T}\right)$ is precisely μ_n , which is the set of roots of Φ_n . Since the two polynomials have the same degree and Φ_n has distinct roots, they must coincide.

- (b) See Assignment 11, Exercise 4.
- (c) Since μ_n is the disjoint union of the set of primitive *d*-th roots of unity for each divisor $d \mid n$, we obtain the equality

$$T^n - 1 = \prod_{d|n} \Phi_d(T).$$

For $n = p^r$ this reads as

$$T^{p^r} - 1 = \prod_{m=0}^r \Phi_{p^m}.$$

Hence, by induction on r,

$$\Phi_{p^r}(T) = \frac{T^{p^r} - 1}{\prod_{m=0}^{r-1} \Phi_{p^m}} = \frac{T^{p^r} - 1}{T^{p^{r-1}} - 1} = \frac{(T^{p^{r-1}})^p - 1}{T^{p^{r-1}} - 1} = \Phi_p(T^{p^{r-1}}).$$

(d) Since 2 and *n* are coprime by assumption, we have $\varphi(2n) = \varphi(2)\varphi(n) = \varphi(n)$, so the two given polynomials have the same degree. If ζ is a primitive 2n-th root of unity, then $\operatorname{ord}_{\mathbb{C}^{\times}}(\zeta^n) = 2$, so $\zeta^n = -1$. In particular, since *n* is odd, we get $(-\zeta)^n = -\zeta^n = 1$, so $-\zeta$ is an *n*-th root of unity. It must be a primitive *n*-th root of unity, because if $(-\zeta)^m = 1$ for m < n, then $\zeta^{2m} = (-\zeta)^{2m} = 1$ which contradicts the fact that ζ is a primitive 2n-th root of unity. Hence the roots of Φ_n are precisely \pm roots of Φ_{2n} , so

$$\Phi_n(T) = \prod_{\Phi_n(\zeta)=0} (T-\zeta) = \prod_{\Phi_{2n}(\zeta)=0} (T+\zeta) = (-1)^{\varphi(2n)} \prod_{\Phi_{2n}(\zeta)=0} (-T-\zeta)$$
$$= (-1)^{\varphi(2n)} \Phi_{2n}(-T).$$

In order to conclude, we need to prove that $\varphi(2n)$ is even for n odd. As already noticed, $\varphi(2n) = \varphi(n)$ in this case. Decomposing n into a product of prime powers (this product is nonempty for n > 1) and using the fact that $\varphi(ab) = \varphi(a)\varphi(b)$ when a and b are coprime¹, we see that it is enough to check that $\varphi(p^r)$ is even for each odd prime p and $r \ge 1$. But this is immediate from the formula $\varphi(p^r) = p^r - p^{r-1}$.

2. Let p be an odd prime number and $r \ge 2$ an integer. The goal of this exercise is to show that there is an isomorphism of abelian groups

$$(\mathbb{Z}/p^r\mathbb{Z})^{\times} \cong \mathbb{Z}/p^{r-1}\mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z}.$$

- (a) Explain why the statement is equivalent to proving that $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is cyclic.
- (b) Show that there exists $g \in \mathbb{Z}$ which generates $(\mathbb{Z}/p\mathbb{Z})^{\times}$ with $g^{p-1} \not\equiv 1 \mod p^2$. *Hint.* Let g be a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Look at $(g+p)^{p-1}$ modulo p^2 and eventually replace g with g + p.

¹By the Chinese Remainder Theorem, $\mathbb{Z}/ab\mathbb{Z} \cong \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ as rings, so they have isomorphic groups of units. Moreover, an element $(x, y) \in \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ is invertible if and only if both x and y are. This yields an isomorphism $(\mathbb{Z}/ab\mathbb{Z})^{\times} \cong (\mathbb{Z}/a\mathbb{Z})^{\times} \times (\mathbb{Z}/b\mathbb{Z})^{\times}$ from which we can deduce that $\varphi(ab) = |(\mathbb{Z}/ab\mathbb{Z})^{\times}| = |(\mathbb{Z}/a\mathbb{Z})^{\times}| \cdot |(\mathbb{Z}/b\mathbb{Z})^{\times}| = \varphi(a)\varphi(b).$

(c) For g as in (b), show that $g^{p^{r-2}(p-1)} \not\equiv 1 \mod p^r$ by proving inductively that there exist integers $k_1, k_2, \ldots, k_{r-1} \in \mathbb{Z}$ for which

$$g^{p^{j-1}(p-1)} = 1 + k_j p^j$$
 and $p \nmid k_j$.

- (d) Explain why $\operatorname{ord}_{(\mathbb{Z}/p^r\mathbb{Z})^{\times}}(g)$ divides $p^{r-1}(p-1)$.
- (e) Suppose that $g^{p^{\varepsilon}d} \equiv 1 \mod p^r$ for some integer $\varepsilon \ge 1$ and a proper divisor d of p-1. Deduce that $g^d \equiv 1 \mod p$ and derive a contradiction.
- (f) Conclude that g is a generator of $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$.

Solution:

- (a) Since p-1 and p^r are coprime, the group $\mathbb{Z}/p^{r-1}\mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z}$ is isomorphic to the cyclic group $\mathbb{Z}/p^{r-1}(p-1)\mathbb{Z}$. The cardinality of the latter group is $p^{r-1}(p-1) = p^r - p^{r-1} = \varphi(p^r) = |(\mathbb{Z}/p^r\mathbb{Z})^{\times}|$. Thus to prove the given statement, it suffices to show that $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is cyclic.
- (b) As seen in Algebra I, the group $\mathbb{F}_p^{\times} = (\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic. Let $g \in \mathbb{Z}$ be a representative of a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. If $g^{p-1} \not\equiv 1 \mod p^2$, then we are done. So assume that $g^{p-1} \equiv 1 \mod p^2$. Expanding the binomial power $(g+p)^{p-1}$ as suggested in the hint, we see that

$$(g+p)^{p-1} = g^{p-1} + (p-1)g^{p-2}p + p^2m$$
, for some $m \in \mathbb{Z}$.

Hence $(g+p)^{p-1} \equiv g^{p-1} - g^{p-2}p \mod p^2$. Since $g^{p-1} \equiv 1 \mod p^2$ by assumption, we see that

$$(g+p)^{p-1} \equiv 1 - g^{p-2}p \mod p^2.$$

Since $p \nmid g$, we have $p \nmid g^{p-2}$; hence $p^2 \nmid g^{p-2}p$ and $(g+p)^{p-1} \not\equiv 1 \mod p^2$. Moreover, g + p is also a generator because it represents the same class as g in $\mathbb{Z}/p\mathbb{Z}$. Thus g + p satisfies the desired properties.

(c) For j = 1, we know by the previous step that there exists a k_1 with

$$g^{1 \cdot (p-1)} = 1 + k_1 p, \ p \nmid k_1,$$

because $g^{p-1} \equiv 1 \mod p$ and $g^{p-1} \not\equiv 1 \mod p^2$. Now suppose that for $j \ge 2$ we have already found k_{j-1} with $g^{p^{j-2}(p-1)} = 1 + k_{j-1}p^{j-1}$ and $p \nmid k_{j-1}$. Then

$$g^{p^{j-1}(p-1)} = (g^{p^{j-2}(p-1)})^p = (1+k_{j-1}p^{j-1})^p \stackrel{(*)}{=} 1 + p \cdot k_{j-1}p^{j-1} + p^{2j-1}m_j$$
$$= 1 + (k_{j-1} + p^{j-1}m_j)p^j$$

for some integer m_j . In the equality (*) we used the fact that p divides the binomial coefficients $\binom{p}{k}$ for 0 < k < p. Then $k_j := k_{j-1} + p^{j-1}m_j$ is not

divisible by p because k_{j-1} is not while $p \mid p^{j-1}m_j$ for $j \ge 2$. This proves the induction step. For j = r - 1, we thus obtain

$$g^{p^{r-2}(p-1)} = 1 + k_{r-1}p^{r-1}$$

where $p \nmid k_{r-1}$, which implies that $g^{p^{r-2}(p-1)} \not\equiv 1 \mod p^r$.

- (d) The order of g in $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ divides the cardinality of the group, which is precisely $\varphi(p^r) = p^{r-1}(p-1)$.
- (e) Under the given assumption, reducing modulo p and applying Fermat's little theorem which asserts that $g^p \equiv g \pmod{p}$, we obtain $g^d \equiv 1 \mod p$, contrary to the fact that g is a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$.
- (f) By Part (d), the order of g in $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is a divisor of $p^{r-1}(p-1)$. Using Part (e), we thus find that it must be of the form $p^{\varepsilon} \cdot (p-1)$. On the other hand, the fact that $g^{p^{r-2}(p-1)} \not\equiv 1 \mod p^r$ from Part (c) means that the order of g in $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ does not divide $p^{r-2}(p-1)$. So the only possibility is that $\operatorname{ord}_{(\mathbb{Z}/p^r\mathbb{Z})^{\times}}(g) = p^{r-1}(p-1) = |(\mathbb{Z}/p^r\mathbb{Z})^{\times}|$. Hence g is a generator of $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$.
- Let n be a positive integer and p ∤ n a prime number. Show that the irreducible factors of Φ_n ∈ F_p[X] are all distinct with degree equal to the order of p in (Z/nZ)[×]. *Hint.* Prove that if α is a root of Φ_n, then α is a primitive root of unity. Solution: See Theorem IV.34 in Prof. Burger's notes on the website.
- 4. Show that for any n ∈ Z_{>0} there are infinitely many primes p with p ≡ 1 mod n. *Hint.* If one such prime p exists, then one can find a prime p' > p with p' ≡ 1 mod (n · p). *Solution*: See Theorem IV.35 in Prof. Burger's notes on the website.