Prof. Rahul Pandharipande

Solution 24

Cyclotomic extensions.

1. Let $\varphi: \mathbb{Z}_{\geqslant 1} \longrightarrow \mathbb{Z}_{\geqslant 0}$ be the Euler function $\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$. Prove the following properties of the cyclotomic polynomials

$$
\Phi_{n}:=\prod_{a \in(\mathbb{Z} / n \mathbb{Z})^{\times}}\left(T-e^{\frac{2 \pi i}{n} a}\right) \in \mathbb{Z}[T] .
$$

(a) $\Phi_{n}(T)=T^{\varphi(n)} \Phi_{n}\left(\frac{1}{T}\right)$ for every integer $n \geqslant 2$.
(b) $\Phi_{p}(T)=T^{p-1}+\cdots+1$ for every prime number p.
(c) $\Phi_{p^{r}}(T)=\Phi_{p}\left(T^{p^{r-1}}\right)$ for every prime number p and integer $r \geqslant 1$.
(d) $\Phi_{2 n}(T)=\Phi_{n}(-T)$ for every odd integer $n>1$.

Solution:

(a) We already know that $\varphi(n)=\operatorname{deg}\left(\Phi_{n}\right)$. Write $\Phi_{n}(T)=\sum_{j=0}^{\varphi(n)} a_{j} T^{j}$. Then

$$
T^{\varphi(n)} \Phi_{n}\left(\frac{1}{T}\right)=T^{\varphi(n)} \sum_{j=0}^{\varphi(n)} a_{j} T^{-j}=\sum_{j=0}^{\varphi(n)} a_{j} T^{\varphi(n)-j} \in \mathbb{Z}[T]
$$

is also a polynomial of degree $\varphi(n)$. Let μ_{n} denote the set of n-th roots of unity. Note that for each $a \in \mu_{n}$ we have $a^{-1} \in \mu_{n}$, so

$$
a^{\varphi(n)} \Phi_{n}\left(\frac{1}{a}\right)=1 \cdot 0=0
$$

Hence the set of roots of $T^{\varphi(n)} \Phi_{n}\left(\frac{1}{T}\right)$ is precisely μ_{n}, which is the set of roots of Φ_{n}. Since the two polynomials have the same degree and Φ_{n} has distinct roots, they must coincide.
(b) See Assignment 11, Exercise 4.
(c) Since μ_{n} is the disjoint union of the set of primitive d-th roots of unity for each divisor $d \mid n$, we obtain the equality

$$
T^{n}-1=\prod_{d \mid n} \Phi_{d}(T)
$$

For $n=p^{r}$ this reads as

$$
T^{p^{r}}-1=\prod_{m=0}^{r} \Phi_{p^{m}}
$$

Hence, by induction on r,

$$
\Phi_{p^{r}}(T)=\frac{T^{p^{r}}-1}{\prod_{m=0}^{r-1} \Phi_{p^{m}}}=\frac{T^{p^{r}}-1}{T^{p^{r-1}}-1}=\frac{\left(T^{p^{r-1}}\right)^{p}-1}{T^{p^{r-1}}-1}=\Phi_{p}\left(T^{p^{r-1}}\right)
$$

(d) Since 2 and n are coprime by assumption, we have $\varphi(2 n)=\varphi(2) \varphi(n)=\varphi(n)$, so the two given polynomials have the same degree. If ζ is a primitive $2 n$-th root of unity, then $\operatorname{ord}_{\mathbb{C} \times}\left(\zeta^{n}\right)=2$, so $\zeta^{n}=-1$. In particular, since n is odd, we get $(-\zeta)^{n}=-\zeta^{n}=1$, so $-\zeta$ is an n-th root of unity. It must be a primitive n-th root of unity, because if $(-\zeta)^{m}=1$ for $m<n$, then $\zeta^{2 m}=(-\zeta)^{2 m}=1$ which contradicts the fact that ζ is a primitive $2 n$-th root of unity. Hence the roots of Φ_{n} are precisely \pm roots of $\Phi_{2 n}$, so

$$
\begin{aligned}
\Phi_{n}(T) & =\prod_{\Phi_{n}(\zeta)=0}(T-\zeta)=\prod_{\Phi_{2 n}(\zeta)=0}(T+\zeta)=(-1)^{\varphi(2 n)} \prod_{\Phi_{2 n}(\zeta)=0}(-T-\zeta) \\
& =(-1)^{\varphi(2 n)} \Phi_{2 n}(-T)
\end{aligned}
$$

In order to conclude, we need to prove that $\varphi(2 n)$ is even for n odd. As already noticed, $\varphi(2 n)=\varphi(n)$ in this case. Decomposing n into a product of prime powers (this product is nonempty for $n>1$) and using the fact that $\varphi(a b)=\varphi(a) \varphi(b)$ when a and b are coprime ${ }^{1}$, we see that it is enough to check that $\varphi\left(p^{r}\right)$ is even for each odd prime p and $r \geqslant 1$. But this is immediate from the formula $\varphi\left(p^{r}\right)=p^{r}-p^{r-1}$.
2. Let p be an odd prime number and $r \geqslant 2$ an integer. The goal of this exercise is to show that there is an isomorphism of abelian groups

$$
\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} / p^{r-1} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z}
$$

(a) Explain why the statement is equivalent to proving that $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is cyclic.
(b) Show that there exists $g \in \mathbb{Z}$ which generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$with $g^{p-1} \not \equiv 1 \bmod p^{2}$. Hint. Let g be a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Look at $(g+p)^{p-1}$ modulo p^{2} and eventually replace g with $g+p$.

[^0](c) For g as in (b), show that $g^{p^{r-2}(p-1)} \not \equiv 1 \bmod p^{r}$ by proving inductively that there exist integers $k_{1}, k_{2}, \ldots, k_{r-1} \in \mathbb{Z}$ for which
$$
g^{p^{j-1}(p-1)}=1+k_{j} p^{j} \quad \text { and } \quad p \nmid k_{j} .
$$
(d) Explain why $\operatorname{ord}_{\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)} \times(g)$ divides $p^{r-1}(p-1)$.
(e) Suppose that $g^{p^{\varepsilon} d} \equiv 1 \bmod p^{r}$ for some integer $\varepsilon \geqslant 1$ and a proper divisor d of $p-1$. Deduce that $g^{d} \equiv 1 \bmod p$ and derive a contradiction.
(f) Conclude that g is a generator of $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$.

Solution:

(a) Since $p-1$ and p^{r} are coprime, the group $\mathbb{Z} / p^{r-1} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z}$ is isomorphic to the cyclic group $\mathbb{Z} / p^{r-1}(p-1) \mathbb{Z}$. The cardinality of the latter group is $p^{r-1}(p-1)=p^{r}-p^{r-1}=\varphi\left(p^{r}\right)=\left|\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}\right|$. Thus to prove the given statement, it suffices to show that $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is cyclic.
(b) As seen in Algebra I, the group $\mathbb{F}_{p}^{\times}=(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic. Let $g \in \mathbb{Z}$ be a representative of a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. If $g^{p-1} \not \equiv 1 \bmod p^{2}$, then we are done. So assume that $g^{p-1} \equiv 1 \bmod p^{2}$. Expanding the binomial power $(g+p)^{p-1}$ as suggested in the hint, we see that

$$
(g+p)^{p-1}=g^{p-1}+(p-1) g^{p-2} p+p^{2} m, \text { for some } m \in \mathbb{Z}
$$

Hence $(g+p)^{p-1} \equiv g^{p-1}-g^{p-2} p \bmod p^{2}$. Since $g^{p-1} \equiv 1 \bmod p^{2}$ by assumption, we see that

$$
(g+p)^{p-1} \equiv 1-g^{p-2} p \bmod p^{2}
$$

Since $p \nmid g$, we have $p \nmid g^{p-2}$; hence $p^{2} \nmid g^{p-2} p$ and $(g+p)^{p-1} \not \equiv 1 \bmod p^{2}$. Moreover, $g+p$ is also a generator because it represents the same class as g in $\mathbb{Z} / p \mathbb{Z}$. Thus $g+p$ satisfies the desired properties.
(c) For $j=1$, we know by the previous step that there exists a k_{1} with

$$
g^{1 \cdot(p-1)}=1+k_{1} p, p \nmid k_{1},
$$

because $g^{p-1} \equiv 1 \bmod p$ and $g^{p-1} \not \equiv 1 \bmod p^{2}$. Now suppose that for $j \geqslant 2$ we have already found k_{j-1} with $g^{p^{j-2}(p-1)}=1+k_{j-1} p^{j-1}$ and $p \nmid k_{j-1}$. Then

$$
\begin{aligned}
g^{p^{j-1}(p-1)} & =\left(g^{p^{j-2}(p-1)}\right)^{p}=\left(1+k_{j-1} p^{j-1}\right)^{p} \stackrel{(*)}{=} 1+p \cdot k_{j-1} p^{j-1}+p^{2 j-1} m_{j} \\
& =1+\left(k_{j-1}+p^{j-1} m_{j}\right) p^{j}
\end{aligned}
$$

for some integer m_{j}. In the equality $(*)$ we used the fact that p divides the binomial coefficients $\binom{p}{k}$ for $0<k<p$. Then $k_{j}:=k_{j-1}+p^{j-1} m_{j}$ is not
divisible by p because k_{j-1} is not while $p \mid p^{j-1} m_{j}$ for $j \geqslant 2$. This proves the induction step. For $j=r-1$, we thus obtain

$$
g^{p^{r-2}(p-1)}=1+k_{r-1} p^{r-1}
$$

where $p \nmid k_{r-1}$, which implies that $g^{p^{r-2}(p-1)} \not \equiv 1 \bmod p^{r}$.
(d) The order of g in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$divides the cardinality of the group, which is precisely $\varphi\left(p^{r}\right)=p^{r-1}(p-1)$.
(e) Under the given assumption, reducing modulo p and applying Fermat's little theorem which asserts that $g^{p} \equiv g(\bmod p)$, we obtain $g^{d} \equiv 1$ modulo p, contrary to the fact that g is a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(f) By Part (d), the order of g in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is a divisor of $p^{r-1}(p-1)$. Using Part (e), we thus find that it must be of the form $p^{\varepsilon} \cdot(p-1)$. On the other hand, the fact that $g^{p^{r-2}(p-1)} \not \equiv 1 \bmod p^{r}$ from Part (c) means that the order of g in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$does not divide $p^{r-2}(p-1)$. So the only possibility is that $\operatorname{ord}_{\left(\mathbb{Z} / p^{r} \mathbb{Z}\right) \times}(g)=p^{r-1}(p-1)=\left|\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}\right|$. Hence g is a generator of $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$.
3. Let n be a positive integer and $p \nmid n$ a prime number. Show that the irreducible factors of $\Phi_{n} \in \mathbb{F}_{p}[X]$ are all distinct with degree equal to the order of p in $(\mathbb{Z} / n \mathbb{Z})^{\times}$. Hint. Prove that if α is a root of Φ_{n}, then α is a primitive root of unity.
Solution: See Theorem IV. 34 in Prof. Burger's notes on the website.
4. Show that for any $n \in \mathbb{Z}_{>0}$ there are infinitely many primes p with $p \equiv 1 \bmod n$. Hint. If one such prime p exists, then one can find a prime $p^{\prime}>p$ with $p^{\prime} \equiv 1 \bmod (n \cdot p)$. Solution: See Theorem IV. 35 in Prof. Burger's notes on the website.

[^0]: ${ }^{1}$ By the Chinese Remainder Theorem, $\mathbb{Z} / a b \mathbb{Z} \cong \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ as rings, so they have isomorphic groups of units. Moreover, an element $(x, y) \in \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ is invertible if and only if both x and y are. This yields an isomorphism $(\mathbb{Z} / a b \mathbb{Z})^{\times} \cong(\mathbb{Z} / a \mathbb{Z})^{\times} \times(\mathbb{Z} / b \mathbb{Z})^{\times}$from which we can deduce that $\varphi(a b)=\left|(\mathbb{Z} / a b \mathbb{Z})^{\times}\right|=\left|(\mathbb{Z} / a \mathbb{Z})^{\times}\right| \cdot\left|(\mathbb{Z} / b \mathbb{Z})^{\times}\right|=\varphi(a) \varphi(b)$.

