Prof. Rahul Pandharipande

Solution 25

Finite fields

1. Let k be a field.
(a) Show that k is an extension of a field k_{0}, called prime field, given by $k_{0}=\mathbb{Q}$ if $\operatorname{char}(k)=0 k_{0}=\mathbb{F}_{p}$ and if $\operatorname{char}(k)=p>0$.
(b) Show that any field homomorphism restricts to the identity on the prime field.

Solution:

(a) The characteristic of the field k is precisely the non-negative generator of the kernel of the unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow k$.
If char $(k)=0$, then φ is an injective map. Since \mathbb{Q} is the field of fractions of \mathbb{Z}, the inclusion φ extends to an inclusion of \mathbb{Q} inside k.
If char $(k)>0$, then it is a prime number p and by the first homomorphism theorem φ induces an injection $\varphi: \mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z} \rightarrow k$, and k_{0} coincides with the additive subgroup of k generated by 1_{k}.
(b) If $\theta: k \rightarrow \ell$ is a field homomorphism, then the composition of ring homomorphisms $\mathbb{Z} \xrightarrow{\varphi_{k}} k \xrightarrow{\theta} \ell$ must coincide with the unique homomorphism $\varphi_{\ell}: \mathbb{Z} \rightarrow \ell$. Moreover θ is necessarily injective (as is every field homomorphism, because the image of $x \in k^{\times}=k \backslash\{0\}$ has inverse $\theta\left(x^{-1}\right)$, hence it cannot be zero). Thus

$$
\operatorname{ker}\left(\varphi_{\ell}\right)=\left\{m \in \mathbb{Z}: \varphi_{k}(m) \in \operatorname{ker}(\theta)\right\}=\left\{m \in \mathbb{Z}: \varphi_{k}(m)=0\right\}=\operatorname{ker}\left(\varphi_{k}\right)
$$

so that k and ℓ have the same characteristic.
If the two fields have characteristic $p>0$, then they contain the prime field \mathbb{F}_{p} as images of φ_{k} and φ_{ℓ} and those prime fields are mapped "identically" because $\varphi_{\ell}=\theta \circ \varphi_{k}$.
If the two fields have characteristic 0 , then θ maps each integer $m \cdot 1_{k}$ to $m \cdot 1_{\ell}$. The inclusion $\varphi_{k}: \mathbb{Z} \rightarrow k$ extends to an inclusion $\overline{\varphi_{k}}: \mathbb{Q} \rightarrow k$ by sending m / n to $\varphi_{k}(m) \varphi_{k}(n)^{-1}$ for $m, n \in \mathbb{Z}$ with $n \neq 0$. Similarly, φ_{ℓ} extends to $\overline{\varphi_{\ell}}: \mathbb{Q} \rightarrow \ell$. In order to conclude, it is enough to prove that $\overline{\varphi_{\ell}}=\theta \circ \overline{\varphi_{k}}$, so that θ restricts
to the identity on the prime fields \mathbb{Q} seen as images of $\overline{\varphi_{k}}$ and $\overline{\varphi_{\ell}}$. This is again done by using the fact that $\varphi_{\ell}=\theta \circ \varphi_{k}$: for all $m, n \in \mathbb{Z}$ with $n \neq 0$,

$$
\begin{aligned}
\left(\theta \circ \overline{\varphi_{k}}\right)(m / n) & =\theta\left(\overline{\varphi_{\ell}}(m / n)\right)=\theta\left(\varphi_{\ell}(m) \varphi_{\ell}(n)^{-1}\right) \\
& =\left(\theta \circ \varphi_{\ell}\right)(m) \cdot\left(\theta \circ \varphi_{\ell}\right)(n)^{-1}=\varphi_{\ell}(m) \varphi_{\ell}(n)^{-1}=\overline{\varphi_{\ell}}(m / n) .
\end{aligned}
$$

2. We say that a field k is perfect if every algebraic field extension of k is separable.
(a) Prove that k is perfect if and only if every irreducible polynomial in $k[X]$ is separable, i.e. has no multiple roots.
(b) Let $f \in k[X]$ be an irreducible polynomial. Show that f is separable if and only if its derivative is nonzero.
(c) For f as in Part (b), show that the derivative of f is zero if and only if char $(k)=p>0$ and $f(X)=g\left(X^{p}\right)$ for some irreducible $g \in k[X]$.
(d) Suppose that char $(k)=p>0$. Prove that k is perfect if and only if the Frobenius homomorphism $\varphi: k \rightarrow k, x \mapsto x^{p}$ is surjective.
(e) Deduce that fields of characteristic zero and finite fields are perfect.

Solution:

(a) Suppose k is a perfect field and let $f \in k[X]$ be an irreducible polynomial with x a root of f in an algebraic closure \bar{k} of k. Then $k(x)$ is a field extension of k and it is separable because k is perfect. Hence x is a separable element, meaning that its minimal polynomial f is separable.
Conversely, assume that every irreducible polynomial in $k[X]$ is separable and let ℓ / k be an algebraic extension. Every $\alpha \in \ell$ has a minimal polynomial over k because ℓ / k is algebraic; it is a separable polynomial by assumption, meaning that α is separable. Hence ℓ / k is a separable field extension.
(b) Let $a_{1}, \ldots, a_{r} \in \bar{k}$ be the distinct roots of f with respective multiplicities $n_{1}, \ldots, n_{r} \geqslant 1$. Over \bar{k} we thus have the factorization

$$
f=\prod_{i=1}^{r}\left(X-a_{i}\right)^{n_{i}}
$$

with derivative

$$
f^{\prime}=\sum_{i=1}^{r} n_{i}\left(X-a_{i}\right)^{n_{i}-1} \cdot \prod_{j \neq i}\left(X-a_{j}\right)^{n_{j}} .
$$

From this we see that $f^{\prime}\left(a_{i}\right)=n_{i}\left(a_{i}-a_{i}\right)^{n_{i}-1} \cdot \prod_{j \neq i}\left(a_{i}-a_{j}\right)^{n_{j}}$ is nonzero if $n_{i}=1$, proving " \Rightarrow ".
Conversely, suppose f has a multiple root a in its splitting field E. Then from the above we see that a is a root of both f and f^{\prime}, so $X-a$ divides
their gcd g (over E), i.e. g has degree at least 1 . Moreover, if $f^{\prime} \neq 0$, then g has degree strictly less than that of f. But the gcd over E is the same as the gcd over k (see Solution 16, Exercise 1(a)), so f is divisible by g over k and hence not irreducible - contrary to the assumption.
(c) If char $(k)=p>0$ and $f(X)=g\left(X^{p}\right)$, then $f^{\prime}(X)=p X^{p-1} \cdot g^{\prime}(X)=0$.

For the converse, write $f=\sum_{i=0}^{n} a_{i} X^{i} \in k[X]$ with $a_{n} \neq 0$. Then we have $f^{\prime}=\sum_{i=1}^{n} i \cdot a_{i} X^{i-1}=0$ if and only if $i \cdot a_{i}=0$ for all $1 \leqslant i \leqslant n$. In particular, $n a_{n}=0$; hence $n=0$ in k, which implies that k has positive characteristic p. Moreover, for any index i not divisible by p, the equation $i \cdot a_{i}=0$ yields $a_{i}=0$. Thus, we can write $f(X)=\sum_{j=0}^{n / p} a_{j p} X^{j p}=: g\left(X^{p}\right) \in k\left[X^{p}\right]$. Note that any factorization of g yields one of f. Thus g is irreducible because f is.
(d) Suppose that k is a perfect field. We want to show that each $y \in k$ has a p-th root in k. Since k is perfect, the polynomial $f=X^{p}-y \in k[X]$ must be either separable, or reducible by Part (a). Let $x \in \bar{k}$ be a root of f, i.e. $x^{p}=y$. Since k has characteristic p, we can compute

$$
(X-x)^{p}=X^{p}-x^{p}=X^{p}-y=f .
$$

Hence x is the only root of f in \bar{k} and so f is not separable; in fact, a factor of f in $k[X]$ has no multiple roots in \bar{k} if and only if it is a linear factor. As each irreducible factor of f in $k[X]$ must separable, the only possibility is that f splits completely in $k[X]$. In particular, $x \in k$.
Conversely, suppose that the Frobenius map $\varphi: k \rightarrow k$ is surjective. By (a) it suffices to prove that every irreducible polynomial f in $k[X]$ is separable. Suppose $f \in k[X]$ is irreducible and has multiple roots. Then by Part (c) we have $f \in k\left[X^{p}\right]$. Moreover, every coefficient of f is a p-th power of an element in k, since φ is surjective by assumption. So we can write

$$
f=\sum_{i=0}^{n} b_{i}^{p} X^{p i}=\left(\sum_{i=0}^{n} b_{i} X^{i}\right)^{p}
$$

which is a proper factorization of f in $k[X]$, contradicting the assumption that f is irreducible. Hence f has no multiple roots.
(e) If k is a field of characteristic zero, then by Part (c), the derivative of any irreducible polynomial over k is nonzero. By Part (b), this implies that every such polynomial is separable, which by Part (a) is equivalent to k being perfect.
Let k be a finite field of characteristic p. The Frobenius homomorphism φ from Part (d) is a generator of $\operatorname{Gal}\left(k / \mathbb{F}_{p}\right)$ (see Assignment 17, Exercise 3). In particular, it is an automorphism, hence surjective. By Part (d) k is thus perfect.
3. Let k be a finite field and consider a finite field extension $k(\alpha, \beta) / k$ such that $k(\alpha) \cap k(\beta)=k$ (inside an algebraic closure of k). Prove that $k(\alpha, \beta)=k(\alpha+\beta)$. Hint. Study the cardinality of the involved fields.
Solution: Clearly, $k(\alpha+\beta) \subset k(\alpha, \beta)$ since $\alpha+\beta \in k(\alpha, \beta)$.
For the reverse inclusion, let $q=|k|$ be a power of a prime p. We write $k=\mathbb{F}_{q}$ and we know that char $(k)=p$. Fix an algebraic closure \bar{k}. Then, as seen in Algebra I, for each power q^{t} of q there exists a unique subfield of \bar{k} containing q^{t} elements: it consists of those elements $\alpha \in \bar{k}$ such that $\alpha^{q^{t}}=\alpha$. The proof of Assignment 13, Exercise $1(\mathrm{~b})$ generalizes to q and tells us that $\mathbb{F}_{q^{s}} \subset \mathbb{F}_{q^{t}}$ if and only if s divides t. Let $n, m \in \mathbb{N}$ be such that $k(\alpha)=\mathbb{F}_{q^{n}}$ and $k(\beta)=\mathbb{F}_{q^{m}}$. Here n is the minimal positive integer h such that $\alpha^{q^{h}}=\alpha$, because otherwise $k(\alpha)$ would be contained in a strictly smaller subfield of $\mathbb{F}_{q^{n}}$. Since $k=k(\alpha) \cap k(\beta)$ is the largest subfield of \bar{k} contained in both $\mathbb{F}_{q^{n}}$ and $\mathbb{F}_{q^{m}}$, we deduce that $\operatorname{gcd}(m, n)=1$. In particular, p is not a common divisor of m and n. Without loss of generality, assume that p does not divide n. Also, note that $k(\alpha, \beta)$ is the smallest subfield of \bar{k} containing both $\mathbb{F}_{q^{n}}$ and $\mathbb{F}_{q^{m}}$, so $k(\alpha, \beta)=\mathbb{F}_{q^{m n}}$.
We write $k(\alpha+\beta)=\mathbb{F}_{q^{t}}$. This means that

$$
\alpha^{q^{t}}+\beta^{q^{t}}=(\alpha+\beta)^{q^{t}}=\alpha+\beta,
$$

implying that

$$
\alpha^{q^{t}}-\alpha=-\left(\beta^{q^{t}}-\beta\right) \in k(\alpha) \cap k(\beta)=k .
$$

Write $\alpha^{q^{t}}=\alpha+\lambda$ for $\lambda \in \mathbb{F}_{q}$. Repeatedly raising to the q^{t}-th power, we deduce inductively that

$$
\alpha^{q^{t p}}=\alpha+p \lambda=\alpha
$$

This means that $n \mid t p$ and since $p \nmid n$ we obtain $n \mid t$. Thus, by uniqueness of subfields mentioned above, $k(\alpha+\beta)=\mathbb{F}_{q^{t}}$ contains $k(\alpha)$ and, in particular, $\alpha \in k(\alpha+\beta)$. This implies that $\beta=(\alpha+\beta)-\alpha \in k(\alpha+\beta)$, as well. Hence $k(\alpha, \beta) \subset k(\alpha+\beta)$ and we conclude that $k(\alpha, \beta)=k(\alpha+\beta)$.
4. Give a detailed proof of Wedderburn's theorem: Every finite skew-field is a field. Solution: See N. Jacobson, Basic Algebra I, 2nd Edition, Section 7.7 or
R. Lidl, H. Niederreiter, Finite Fields, Ch. 2, Section 6, Theorem 2.55, first proof.

