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FINITE FIELDS

1. Let k£ be a field.

(a)
(b)

Show that k is an extension of a field kg, called prime field, given by ky = Q
if char (k) = 0 ko = F,, and if char (k) =p > 0.

Show that any field homomorphism restricts to the identity on the prime
field.

Solution:

(a)

The characteristic of the field k is precisely the non-negative generator of the
kernel of the unique ring homomorphism ¢: Z — k.

If char (k) = 0, then ¢ is an injective map. Since Q is the field of fractions
of Z, the inclusion ¢ extends to an inclusion of Q inside k.

If char (k) > 0, then it is a prime number p and by the first homomorphism
theorem ¢ induces an injection ¢: F, := Z/pZ — k, and ko coincides with
the additive subgroup of k generated by 1.

If 0: k — ¢ is a field homomorphism, then the composition of ring homo-

morphisms Z 2% k %% ¢ must coincide with the unique homomorphism
w¢: Z — £. Moreover 6 is necessarily injective (as is every field homomor-
phism, because the image of z € k* = k ~ {0} has inverse 6(z~'), hence it
cannot be zero). Thus

ker(yps) = {m € Z : pp(m) € ker(0)} = {m € Z : pr.(m) = 0} = ker(¢x)

so that k and ¢ have the same characteristic.

If the two fields have characteristic p > 0, then they contain the prime field
F, as images of ¢ and ¢, and those prime fields are mapped "identically”
because p; = 6 o .

If the two fields have characteristic 0, then # maps each integer m-1; to m-1,.
The inclusion ¢y : Z — k extends to an inclusion g5 : Q — k by sending m/n
to @i (m)pr(n)~t for m,n € Z with n # 0. Similarly, @, extends to gg: Q — .
In order to conclude, it is enough to prove that p; = 6 ooy, so that 6 restricts



to the identity on the prime fields Q seen as images of py and ;. This is
again done by using the fact that ¢, = 0 o g for all m,n € Z with n #£ 0,

(0 0%k)(m/n) = 0(Fe(m/n)) = 0(e(m)pe(n) )
= (0 0pe)(m) - (0 0pe)(n) " = e(m)gpe(n) " = Bi(m/n).

2. We say that a field k is perfect if every algebraic field extension of k is separable.

(a)
(b)
(c)
(d)
(e)

Prove that k is perfect if and only if every irreducible polynomial in k[X] is
separable, i.e. has no multiple roots.

Let f € k[X] be an irreducible polynomial. Show that f is separable if and
only if its derivative is nonzero.

For f as in Part (b), show that the derivative of f is zero if and only if
char (k) = p > 0 and f(X) = g(XP?) for some irreducible g € k[X].

Suppose that char (k) = p > 0. Prove that k is perfect if and only if the
Frobenius homomorphism ¢: k — k, x — 2P is surjective.

Deduce that fields of characteristic zero and finite fields are perfect.

Solution:

(a)

Suppose k is a perfect field and let f € k[X] be an irreducible polynomial
with 2 a root of f in an algebraic closure k of k. Then k(x) is a field extension
of k and it is separable because k is perfect. Hence x is a separable element,
meaning that its minimal polynomial f is separable.

Conversely, assume that every irreducible polynomial in k[X] is separable
and let £/k be an algebraic extension. Every o € £ has a minimal polynomial
over k because (/k is algebraic; it is a separable polynomial by assumption,
meaning that « is separable. Hence ¢/k is a separable field extension.

Let ai,...,a, € k be the distinct roots of f with respective multiplicities
ni,...,n, = 1. Over k we thus have the factorization

f H _az Y

with derivative
= an —a;)"! -H(X—aj)”j

From this we see that f'(a;) = ni(a; — a;)" - H#i(ai — a;)™ is nonzero if
n; = 1, proving “=".

Conversely, suppose f has a multiple root a in its splitting field £. Then
from the above we see that a is a root of both f and f’, so X — a divides
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their ged g (over E), i.e. g has degree at least 1. Moreover, if f' # 0, then ¢
has degree strictly less than that of f. But the ged over E is the same as the
ged over k (see Solution 16, Exercise 1(a)), so f is divisible by g over k and
hence not irreducible — contrary to the assumption.

If char (k) = p > 0 and f(X) = g(X?), then f/(X) =pXP~!. ¢ (X)=0.

For the converse, write f = > " ja; X" € k[X] with a,, # 0. Then we have
=" ia, X" =0ifand only if i-a; = 0 for all 1 <4 < n. In particular,
na, = 0; hence n = 0 in k, which implies that k& has positive characteristic p.
Moreover, for any index ¢ not divisible by p, the equation 7 - a; = 0 yields
a; = 0. Thus, we can write f(X) = Z;ﬁ) a;pX’P =: g(X?) € k[X?]. Note
that any factorization of g yields one of f. Thus g is irreducible because f is.

Suppose that k is a perfect field. We want to show that each y € k has a
p-th root in k. Since k is perfect, the polynomial f = X? — y € k[X] must
be either separable, or reducible by Part (a). Let € k be a root of f, i.e.
2P = y. Since k has characteristic p, we can compute

(X —2)=XP—aP =XP—y=1f.

Hence z is the only root of f in k and so f is not separable; in fact, a factor
of f in k[X] has no multiple roots in k if and only if it is a linear factor.
As each irreducible factor of f in k[X] must separable, the only possibility is
that f splits completely in k[X]. In particular, z € k.

Conversely, suppose that the Frobenius map ¢: k — k is surjective. By (a)
it suffices to prove that every irreducible polynomial f in k[X] is separable.
Suppose f € k[X] is irreducible and has multiple roots. Then by Part (c)
we have f € k[XP]. Moreover, every coefficient of f is a p-th power of an
element in k, since ¢ is surjective by assumption. So we can write

n n p
e (z mxi) 7
1=0 =0

which is a proper factorization of f in k[X], contradicting the assumption
that f is irreducible. Hence f has no multiple roots.

If k£ is a field of characteristic zero, then by Part (c), the derivative of any
irreducible polynomial over k is nonzero. By Part (b), this implies that every
such polynomial is separable, which by Part (a) is equivalent to k being
perfect.

Let k£ be a finite field of characteristic p. The Frobenius homomorphism ¢
from Part (d) is a generator of Gal(k/FF,) (see Assignment 17, Exercise 3).
In particular, it is an automorphism, hence surjective. By Part (d) & is thus
perfect.



3. Let k be a finite field and consider a finite field extension k(«, 3)/k such that
k(a) Nk(B) = k (inside an algebraic closure of k). Prove that k(a, 5) = k(o + 5).

Hint. Study the cardinality of the involved fields.
Solution: Clearly, k(o + ) C k(«, ) since a+ 8 € k(a, B).

For the reverse inclusion, let ¢ = |k| be a power of a prime p. We write k = F, and
we know that char (k) = p. Fix an algebraic closure k. Then, as seen in Algebra I,
for each power ¢* of ¢ there exists a unique subfield of k containing ¢* elements: it
consists of those elements o € k such that a? = a. The proof of Assignment 13,
Exercise 1(b) generalizes to ¢ and tells us that F . C Fy if and only if s divides ¢.
Let n,m € N be such that k(«) = Fy» and k() = F,m. Here n is the minimal
positive integer A such that al" = a, because otherwise k(«) would be contained
in a strictly smaller subfield of Fy». Since k = k(a) N k() is the largest subfield
of k contained in both Fn and Fym, we deduce that ged(m,n) = 1. In particular,
p is not a common divisor of m and n. Without loss of generality, assume that p
does not divide n. Also, note that k(a, 3) is the smallest subfield of k containing
both Fjn and Fym, so k(a, ) = Fymn.

We write k(a + ) = F,e. This means that
Odqt_i_ﬁqt — (O[_f_ﬂ)qt :a+ﬁ,

implying that
t

ol —a=—(p"=B) ekle)Nk(B) =k

Write 04" = a + \ for \ € F,. Repeatedly raising to the ¢’-th power, we deduce
inductively that

aqtp:a—i—p)\:a.

This means that n | tp and since p t n we obtain n | t. Thus, by uniqueness
of subfields mentioned above, k(a + ) = F, contains k(a) and, in particular,
a € k(oo + ). This implies that § = (o + ) — a € k(a + ), as well. Hence
k(a, B) C k(a4 8) and we conclude that k(a, 8) = k(a + 3).

4. Give a detailed proof of Wedderburn’s theorem: Ewvery finite skew-field is a field.

Solution: See N. Jacobson, Basic Algebra I, 2nd Edition, Section 7.7 or
R. Lidl, H. Niederreiter, Finite Fields, Ch. 2, Section 6, Theorem 2.55, first proof.



