Prof. Rahul Pandharipande

Solution 26

Representations of finite groups

1. Show that the image of a one-dimensional representation of a finite group is a cyclic group.
Solution: Let G be a finite group. A representation of dimension 1 of G is an homomorphism $\rho: G \rightarrow G L_{1}(\mathbb{C})$. The group $G L_{1}(\mathbb{C})$ coincides with the multiplicative group \mathbb{C}^{\times}. Let z be an element in the image of ρ. Since G is finite, we get that $z^{n}=1$ for some n, in particular the image of ρ is a subgroup of the group S^{1} of complex numbers of modulus one. We saw in class that all finite subgroups of S^{1} are cyclic and this finishes the proof.
2. Let H be a subgroup of index 2 of a group G, and let $\sigma: H \rightarrow \operatorname{GL}(V)$ be a representation. Let a be an element in $G \backslash H$. Define a conjugate representation ${ }^{a} \sigma: H \rightarrow \mathrm{GL}(V)$ by the rule ${ }^{a} \sigma(h)=\sigma\left(a^{-1} h a\right)$. Prove that
(a) The conjugate representation ${ }^{a} \sigma$ is indeed a representation of H.
(b) If σ is the restriction to H of a representation of G, then ${ }^{a} \sigma$ is isomorphic to σ.
(c) If b is another element of $G \backslash H$, then the conjugate representation ${ }^{b} \sigma$ is isomorphic to ${ }^{a} \sigma$.

Solution:

(a) In order to check that ${ }^{a} \sigma$ is well defined, let us notice that, since H has index 2 in G, H is normal, hence for every element $h \in H$ the element $a^{-1} h a$ still belongs to H, in particular the value $\sigma\left(a^{-1} h a\right)$ is well defined. Let us now check that ${ }^{a} \sigma$ is a representation. In order to do this, it is enough to verify that ${ }^{a} \sigma$ is an homomorphism in $G L_{n}$ for some n. In particular, since σ is a representation in $G L(V)$, the image of ${ }^{a} \sigma$ is also contained in $G L(V)$, hence we only have to verify that ${ }^{a} \sigma(g h)={ }^{a} \sigma(g)^{a} \sigma(h)$. But this follows from the definition:

$$
{ }^{a} \sigma(g h)=\sigma\left(a^{-1} g h a\right)=\sigma\left(\left(a^{-1} g a\right)\left(a^{-1} h a\right)\right)=\sigma\left(a^{-1} g a\right) \sigma\left(a^{-1} h a\right)={ }^{a} \sigma(g)^{a} \sigma(h) .
$$

(b) Assume that σ is the restriction of a representation of G, and let $A \in G L(V)$ be the element $\sigma(a)$. In order to show that σ and ${ }^{a} \sigma$ are conjugate we need a linear isomorphism $L: V \rightarrow V$ such that, for any $h \in H, \sigma(h)(L v)=$ $L\left({ }^{a} \sigma(h) v\right)$. The linear map A is such an isomorphism, indeed for any $v \in V$

$$
\sigma(h) A v=A A^{-1} \sigma(h) A v=A \sigma\left(a^{-1}\right) \sigma(h) \sigma(a) v=A \sigma\left(a^{-1} h a\right)=A \sigma(h) v .
$$

(c) Since b is another element of G that doesn't belong to H, and since H has index 2 in G, then there exists an element h in H such that $b=a h$. Now we have, for every $g \in H$, that ${ }^{b} \sigma(g)=\sigma\left(h^{-1} a^{-1} g a h\right)=\sigma\left(h^{-1}\right)^{a} \sigma(g) \sigma(h)$. In particular this implies that, for every $g \in H$, we have $\sigma(h)^{b} \sigma(g)={ }^{a} \sigma(g) \sigma(h)$ and the linear map $\sigma(h): V \rightarrow V$ gives an isomorphism of the representations ${ }^{a} \sigma$ and ${ }^{b} \sigma$.
3. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation of a finite group on a real vector space V. Prove the following:
(a) There exists a G-invariant, positive definite, symmetric form \langle,$\rangle on V$.
(b) The representation ρ is a direct sum of irreducible representations.

Solution:

(a) Let us fix a positive definite, symmetric bilinear form [,] on V. (To find such a form it is enough to fix an isomorphism of V with \mathbb{R}^{n} and consider the standard positive definite symmetric bilinear form on $\left.\mathbb{R}^{n}\right)$. And let us define the averaged form by setting

$$
\langle v, w\rangle=\frac{1}{|G|} \sum_{g \in G}[\rho(g) v, \rho(g) w] .
$$

The form is symmetric, positive definite and G-invariant. The fact that it is symmetric follows from the symmetry of [,]:

$$
\langle v, w\rangle=\frac{1}{|G|} \sum_{g \in G}[\rho(g) v, \rho(g) w]=\frac{1}{|G|} \sum_{g \in G}[\rho(g) w, \rho(g) v]=\langle v, w\rangle .
$$

To check that the form is positive, it is enough to check that $\langle v, v\rangle>0$, but we have

$$
\langle v, v\rangle=\frac{1}{|G|} \sum_{g \in G}[\rho(g) v, \rho(g) v]>0
$$

since the latter expression is a sum of positive numbers, the verification of the G invariance follows rearranging the summation, once one notices that for any element $h \in G$, right multiplication by h gives a permutation of G :

$$
\begin{aligned}
\langle\rho(h) v, \rho(h) w\rangle & =\frac{1}{|G|} \sum_{g \in G}[\rho(g) \rho(h) v, \rho(g) \rho(h) w] \\
& =\frac{1}{|G|} \sum_{g h \in G}[\rho(g h) v, \rho(g h) w]=\langle v, w\rangle .
\end{aligned}
$$

(b) If ρ is irreducible, there is nothing to prove. Assume that ρ is not irreducible and let $W<V$ a ρ-invariant subspace. We claim that the orthogonal of W with respect to the form \langle,$\rangle defined in the previous part is also \rho$-invariant. Indeed it is enough to check that if $z \in W^{\perp}$ and $g \in G$, then $\rho(g) z$ is in W^{\perp}, or equivalently for every $w \in W\langle\rho(g) z, w\rangle=0$. But this is true since

$$
\langle\rho(g) z, w\rangle=\left\langle\rho\left(g^{-1}\right) \rho(g) z, \rho\left(g^{-1}\right) w\right\rangle=\left\langle z, \rho\left(g^{-1}\right) w\right\rangle=0
$$

Here the first equality is due to the fact that \langle,$\rangle is \rho$-invariant, the second one to the fact that ρ is a representation, the third to the fact that $\rho\left(g^{-1}\right) w \in W$ since W is G-invariant, and z belongs to W^{\perp}. This implies that ρ splits as a direct sum of two representations $\rho^{\prime}, \rho^{\prime \prime}$. Since V is finite dimensional the conclusion follows by induction.
4. Consider the representation ρ of \mathbb{Z} on \mathbb{C}^{2} defined by $\rho(1)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(a) Find a proper invariant subspace.
(b) Show that ρ is not a direct sum of irreducible representations.

Solution:

(a) Clearly the subspace of \mathbb{C}^{2} generated by the first element of the standard basis is invariant under the representation ρ : indeed any element in $\mathbb{C} e_{1}$ is of the form $\binom{a}{0}$ for some $a \in \mathbb{C}$. Moreover, for any $n \in \mathbb{Z}$, we have that $\rho(n)$ is the matrix $\left(\begin{array}{c}1 \\ n \\ 1\end{array}\right)$ and so $\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right)\binom{a}{0}=\binom{a}{0}$.
(b) Assume by contradiction that ρ is the direct sum of irreducible representations. Then there would exist another vector $w \in \mathbb{C}^{2}$ that doesn't belong to $\mathbb{C} e_{1}$, and such that $\rho(n) w=w$ for every $n \in \mathbb{Z}$. But since $\rho(1)$ has no other eigenvector apart from e_{1}, this is clearly not possible.
5. Determine the character table for the Klein four group.

Solution: The Klein four group K is isomorphic to the product $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Since it is abelian, its conjugacy classes coincide with the four group elements. Let a and b be generators of K. In order to compute the character table for K it is enough to determine four distinct non-isomorphic one-dimensional representations of K. If ρ is a one-dimensional representation of K, the image of a generator of K must be an element of order two in \mathbb{C}^{\times}, i.e. an element of the set $\{ \pm 1\}$. Moreover, for any such choice we get a non-isomorphic representation of K. This implies that the character table of K is

K	1	a	b	$a b$
ρ_{1}	1	1	1	1
ρ_{a}	1	-1	1	-1
ρ_{b}	1	1	-1	-1
$\rho_{a b}$	1	-1	-1	1

6. Consider the dihedral group D_{5}, and its cyclic subgroup C_{5}.
(a) Determine the character table of D_{5} and of C_{5}.
(b) Decompose the restriction of each irreducible character of D_{5} into irreducible characters of C_{5}.

Solution:

(a) Let ω denote a primitive fifth root of unity in \mathbb{C}^{*}. There are five conjugacy classes in C_{5}, corresponding to the five elements. In order to determine a representation of C_{5}, it is enough to describe the image of the generator that is going to be a fifth root of unity, hence a power of ω. In particular we get that the character table of C_{5} is

C_{5}	0	1	2	3	4
τ_{1}	1	1	1	1	1
τ_{ω}	1	ω	ω^{2}	ω^{3}	ω^{4}
$\tau_{\omega^{2}}$	1	ω^{2}	ω^{4}	ω	ω^{3}
$\tau_{\omega^{3}}$	1	ω^{3}	ω	ω^{4}	ω^{2}
$\tau_{\omega^{4}}$	1	ω^{4}	ω^{3}	ω^{2}	ω

In order to compute the conjugacy classes in D_{5} let us notice that, since 5 is odd, all reflections are conjugate, hence form a conjugacy class C_{y}, moreover the rotations come in three different conjugacy classes: $\{1\},\left\{x, x^{4}\right\},\left\{x^{2}, x^{3}\right\}$. This implies that we have to exhibit five different irreducible representations of D_{5}. We will denote by ρ_{1} the trivial representation. Let us consider the subgroup C_{5} of D_{5}. It is a normal subgroup and the quotient $D_{5} / C_{5}=\mathbb{Z} / 2 \mathbb{Z}$. This gives another one dimensional (hence irreducible) representation of D_{5}, the sign representation. We will denote it by sign.
Let us now consider the standard representation of D_{5} as a subgroup of $O_{2}(\mathbb{R})$. We showed in class that the group D_{5} is isomorphic to the subgroup of O_{2} generated by a reflection and a rotation of angle $2 \pi / 5$. The matrix expression for a rotation of angle $2 \pi / 5$ is

$$
R_{x}=\left(\begin{array}{cc}
\cos (2 \pi / 5) & \sin (2 \pi / 5) \\
-\sin (2 \pi / 5) & \cos (2 \pi / 5)
\end{array}\right)
$$

and the matrix expression for the reflection along the x axis is $R_{y}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Interpreting these two matrices as complex matrices, and letting them act on \mathbb{C}^{2} we get a complex representation of D_{5} that we will denote by ρ_{ω}. It is well known that if ω can be chosen to be $\cos (2 \pi / 5)+i \sin (2 \pi / 5)$. In particular it is easy to compute the character of ρ_{ω} (see the table below). Since the character has norm one, we get that the representation is irreducible. The last irreducible representation $\rho_{\omega^{2}}$ of D_{5} is obtained in a similar manner, by defining $\rho_{\omega^{2}}(y)=R_{y}$ and $\rho_{\omega^{2}}(x)=R_{x}^{2}$. Computing the character of this representation one can easily check that $\rho_{\omega^{2}}$ is irreducible and $\rho_{\omega^{2}}$ is not isomorphic to ρ_{ω}. This leads to the character table for D_{5}.

D_{5}	$\{1\}$	$\left\{x, x^{4}\right\}$	$\left\{x^{2}, x^{3}\right\}$	C_{y}
ρ_{1}	1	1	1	1
sign	1	1	1	-1
ρ_{ω}	2	$\omega+\bar{\omega}$	$\omega^{2}+\bar{\omega}^{2}$	0
$\rho_{\omega^{2}}$	2	$\omega^{2}+\bar{\omega}^{2}$	$\omega+\bar{\omega}$	0

(b) The restriction to C_{5} of the characters of ρ_{1} and sign equal to the trivial character, the character of ρ_{ω} is the sum of the characters of τ_{ω} and $\tau_{\omega^{4}}$, in a similar way $\rho_{\omega^{2}}$ is the direct sum of $\tau_{\omega^{2}}$ and $\tau_{\omega^{3}}$.
7. The quaternion group Q is the group $Q=\left\langle i, j, k \mid i^{2}=j^{2}=k^{2}=-1, i j k=-1\right\rangle$
(a) Find a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ isomorphic to Q and determine the order of Q.
(b) Determine the conjugacy classes of Q.
(c) Show that any subgroup of Q is normal.
(d) Determine the character table of Q.

Solution:

(a) Let us consider the elements of $\mathrm{GL}_{2}(\mathbb{C}) I=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), K=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$. We have $I^{2}=-\mathrm{id}_{\mathbb{C}}, J^{2}=-\mathrm{id}_{\mathbb{C}}, K^{2}=-\mathrm{id}_{\mathbb{C}}$, moreover

$$
I J K=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)=-\mathrm{id}_{\mathbb{C}} .
$$

In particular the subgroup Q can be realized as a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ and has eight elements: $\left\{ \pm \mathrm{id}_{\mathbb{C}}, \pm I, \pm J, \pm K\right\}$.
(b) We will now identify Q with the subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ we just defined, to make explicit computations. Since the matrices $\pm I d$ commute with every matrix in $\mathrm{GL}_{2}(\mathbb{C})$, in particular they commute with the elements in Q, hence they are in the center of Q. Moreover, from the fact that $I^{2}=-1$ we get that $I^{-1}=-I$. We can now compute the relation

$$
I J I^{-1}=-\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=-J .
$$

Analogously one gets that $K J K^{-1}=-J$, in particular the conjugacy class of J contains the two elements $\pm J$. In the same way one checks that the conjugacy class of I contains $\pm I$ and the conjugacy class of K contains $\pm K$.
(c) The computation above shows that the subgroup generated by I is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ and is normal and the same is true for $\langle J\rangle$ and $\langle K\rangle$. The only other non trivial subgroup is the center $\{ \pm 1\}$ of Q and clearly the center is normal.
(d) In order to compute the character table we need to find 5 irreducible representations of Q, since there are 5 conjugacy classes. Of course there is the trivial representation, which we will denote by ρ_{1}. Moreover, we saw above that the subgroup generated by I is normal. Since the quotient Q / I is $\mathbb{Z} / 2 \mathbb{Z}$ we get a representation ρ_{i} obtained by composing the sign representation of $\mathbb{Z} / 2 \mathbb{Z}$ with the quotient map. In the same way (quotienting the subgroup generated by J and K respectively) one gets the representations ρ_{j} and ρ_{k}. All the representations $\rho_{1}, \rho_{i}, \rho_{j}$ and ρ_{k} are one-dimensional, hence irreducible. Moreover, by computing the characters, it is easy to see that they are not isomorphic, since the characters are different. We have realized Q as a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$. This gives a two dimensional representation ρ of Q which is irreducible since the eigenspaces of I and J are distinct. We can sum up the results we just obtained in the character table for Q :

Q	$\{1\}$	$\{-1\}$	$\{ \pm i\}$	$\{ \pm j\}$	$\{ \pm k\}$
ρ_{1}	1	1	1	1	1
ρ_{i}	1	1	1	-1	-1
ρ_{j}	1	1	-1	1	-1
ρ_{k}	1	1	-1	-1	1
ρ	2	-2	0	0	0

No hand-in. Enjoy your semester break!

