
D-MATH Algebra II FS19
Prof. Rahul Pandharipande

Solution 26

Representations of finite groups

1. Show that the image of a one-dimensional representation of a finite group is a
cyclic group.

Solution: Let G be a finite group. A representation of dimension 1 of G is an
homomorphism ρ : G → GL1(C). The group GL1(C) coincides with the multi-
plicative group C×. Let z be an element in the image of ρ. Since G is finite, we
get that zn = 1 for some n, in particular the image of ρ is a subgroup of the group
S1 of complex numbers of modulus one. We saw in class that all finite subgroups
of S1 are cyclic and this finishes the proof.

2. Let H be a subgroup of index 2 of a group G, and let σ : H → GL(V ) be a
representation. Let a be an element in GrH. Define a conjugate representation
aσ : H → GL(V ) by the rule aσ(h) = σ(a−1ha). Prove that

(a) The conjugate representation aσ is indeed a representation of H.

(b) If σ is the restriction to H of a representation of G, then aσ is isomorphic
to σ.

(c) If b is another element of G r H, then the conjugate representation bσ is
isomorphic to aσ.

Solution:

(a) In order to check that aσ is well defined, let us notice that, since H has index
2 in G, H is normal, hence for every element h ∈ H the element a−1ha still
belongs to H, in particular the value σ(a−1ha) is well defined. Let us now
check that aσ is a representation. In order to do this, it is enough to verify
that aσ is an homomorphism in GLn for some n. In particular, since σ is a
representation in GL(V ), the image of aσ is also contained in GL(V ), hence
we only have to verify that aσ(gh) = aσ(g)aσ(h). But this follows from the
definition:

aσ(gh) = σ(a−1gha) = σ((a−1ga)(a−1ha)) = σ(a−1ga)σ(a−1ha) = aσ(g)aσ(h).
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(b) Assume that σ is the restriction of a representation of G, and let A ∈ GL(V )
be the element σ(a). In order to show that σ and aσ are conjugate we need
a linear isomorphism L : V → V such that, for any h ∈ H, σ(h)(Lv) =
L(aσ(h)v). The linear map A is such an isomorphism, indeed for any v ∈ V

σ(h)Av = AA−1σ(h)Av = Aσ(a−1)σ(h)σ(a)v = Aσ(a−1ha) = Aσ(h)v.

(c) Since b is another element of G that doesn’t belong to H, and since H has
index 2 in G, then there exists an element h in H such that b = ah. Now
we have, for every g ∈ H, that bσ(g) = σ(h−1a−1gah) = σ(h−1)aσ(g)σ(h). In
particular this implies that, for every g ∈ H, we have σ(h)bσ(g) = aσ(g)σ(h)
and the linear map σ(h) : V → V gives an isomorphism of the representations
aσ and bσ.

3. Let ρ : G→ GL(V ) be a representation of a finite group on a real vector space V .
Prove the following:

(a) There exists a G-invariant, positive definite, symmetric form 〈, 〉 on V .

(b) The representation ρ is a direct sum of irreducible representations.

Solution:

(a) Let us fix a positive definite, symmetric bilinear form [ , ] on V . (To find
such a form it is enough to fix an isomorphism of V with Rn and consider the
standard positive definite symmetric bilinear form on Rn). And let us define
the averaged form by setting

〈v, w〉 =
1

|G|
∑
g∈G

[ρ(g)v, ρ(g)w].

The form is symmetric, positive definite and G-invariant. The fact that it is
symmetric follows from the symmetry of [ , ]:

〈v, w〉 =
1

|G|
∑
g∈G

[ρ(g)v, ρ(g)w] =
1

|G|
∑
g∈G

[ρ(g)w, ρ(g)v] = 〈v, w〉.

To check that the form is positive, it is enough to check that 〈v, v〉 > 0, but
we have

〈v, v〉 =
1

|G|
∑
g∈G

[ρ(g)v, ρ(g)v] > 0

since the latter expression is a sum of positive numbers, the verification of
the G invariance follows rearranging the summation, once one notices that
for any element h ∈ G, right multiplication by h gives a permutation of G:

〈ρ(h)v, ρ(h)w〉 = 1
|G|
∑

g∈G[ρ(g)ρ(h)v, ρ(g)ρ(h)w]

= 1
|G|
∑

gh∈G[ρ(gh)v, ρ(gh)w] = 〈v, w〉.
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(b) If ρ is irreducible, there is nothing to prove. Assume that ρ is not irreducible
and let W < V a ρ-invariant subspace. We claim that the orthogonal of W
with respect to the form 〈 , 〉 defined in the previous part is also ρ-invariant.
Indeed it is enough to check that if z ∈ W⊥ and g ∈ G, then ρ(g)z is in W⊥,
or equivalently for every w ∈ W 〈ρ(g)z, w〉 = 0. But this is true since

〈ρ(g)z, w〉 = 〈ρ(g−1)ρ(g)z, ρ(g−1)w〉 = 〈z, ρ(g−1)w〉 = 0

Here the first equality is due to the fact that 〈 , 〉 is ρ-invariant, the second one
to the fact that ρ is a representation, the third to the fact that ρ(g−1)w ∈ W
since W is G-invariant, and z belongs to W⊥. This implies that ρ splits as
a direct sum of two representations ρ′, ρ′′. Since V is finite dimensional the
conclusion follows by induction.

4. Consider the representation ρ of Z on C2 defined by ρ(1) = ( 1 1
0 1 ).

(a) Find a proper invariant subspace.

(b) Show that ρ is not a direct sum of irreducible representations.

Solution:

(a) Clearly the subspace of C2 generated by the first element of the standard
basis is invariant under the representation ρ: indeed any element in Ce1 is of
the form ( a

0 ) for some a ∈ C. Moreover, for any n ∈ Z, we have that ρ(n) is
the matrix ( 1 n

1 ) and so ( 1 n
1 ) ( a

0 ) = ( a
0 ) .

(b) Assume by contradiction that ρ is the direct sum of irreducible representa-
tions. Then there would exist another vector w ∈ C2 that doesn’t belong to
Ce1, and such that ρ(n)w = w for every n ∈ Z. But since ρ(1) has no other
eigenvector apart from e1, this is clearly not possible.

5. Determine the character table for the Klein four group.

Solution: The Klein four group K is isomorphic to the product Z/2Z×Z/2Z. Since
it is abelian, its conjugacy classes coincide with the four group elements. Let a and
b be generators of K. In order to compute the character table for K it is enough
to determine four distinct non-isomorphic one-dimensional representations of K.
If ρ is a one-dimensional representation of K, the image of a generator of K must
be an element of order two in C×, i.e. an element of the set {±1}. Moreover, for
any such choice we get a non-isomorphic representation of K. This implies that
the character table of K is
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K 1 a b ab

ρ1 1 1 1 1
ρa 1 -1 1 -1
ρb 1 1 -1 -1
ρab 1 -1 -1 1

6. Consider the dihedral group D5, and its cyclic subgroup C5.

(a) Determine the character table of D5 and of C5.

(b) Decompose the restriction of each irreducible character of D5 into irreducible
characters of C5.

Solution:

(a) Let ω denote a primitive fifth root of unity in C∗. There are five conjugacy
classes in C5, corresponding to the five elements. In order to determine a
representation of C5, it is enough to describe the image of the generator that
is going to be a fifth root of unity, hence a power of ω. In particular we get
that the character table of C5 is

C5 0 1 2 3 4

τ1 1 1 1 1 1
τω 1 ω ω2 ω3 ω4

τω2 1 ω2 ω4 ω ω3

τω3 1 ω3 ω ω4 ω2

τω4 1 ω4 ω3 ω2 ω

In order to compute the conjugacy classes in D5 let us notice that, since 5 is
odd, all reflections are conjugate, hence form a conjugacy class Cy, moreover
the rotations come in three different conjugacy classes: {1}, {x, x4}, {x2, x3}.
This implies that we have to exhibit five different irreducible representations
of D5. We will denote by ρ1 the trivial representation. Let us consider the
subgroup C5 of D5. It is a normal subgroup and the quotient D5/C5 = Z/2Z.
This gives another one dimensional (hence irreducible) representation of D5,
the sign representation. We will denote it by sign.

Let us now consider the standard representation ofD5 as a subgroup of O2(R).
We showed in class that the group D5 is isomorphic to the subgroup of O2

generated by a reflection and a rotation of angle 2π/5. The matrix expression
for a rotation of angle 2π/5 is

Rx =

(
cos(2π/5) sin(2π/5)
− sin(2π/5) cos(2π/5)

)
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and the matrix expression for the reflection along the x axis is Ry = ( 1 0
0 −1 ).

Interpreting these two matrices as complex matrices, and letting them act on
C2 we get a complex representation of D5 that we will denote by ρω. It is well
known that if ω can be chosen to be cos(2π/5) + i sin(2π/5). In particular
it is easy to compute the character of ρω (see the table below). Since the
character has norm one, we get that the representation is irreducible. The
last irreducible representation ρω2 of D5 is obtained in a similar manner, by
defining ρω2(y) = Ry and ρω2(x) = R2

x. Computing the character of this
representation one can easily check that ρω2 is irreducible and ρω2 is not
isomorphic to ρω. This leads to the character table for D5.

D5 {1} {x, x4} {x2, x3} Cy

ρ1 1 1 1 1
sign 1 1 1 -1
ρω 2 ω + ω̄ ω2 + ω̄2 0
ρω2 2 ω2 + ω̄2 ω + ω̄ 0

(b) The restriction to C5 of the characters of ρ1 and sign equal to the trivial
character, the character of ρω is the sum of the characters of τω and τω4 , in a
similar way ρω2 is the direct sum of τω2 and τω3 .

7. The quaternion group Q is the group Q = 〈i, j, k | i2 = j2 = k2 = −1, ijk = −1〉

(a) Find a subgroup of GL2(C) isomorphic to Q and determine the order of Q.

(b) Determine the conjugacy classes of Q.

(c) Show that any subgroup of Q is normal.

(d) Determine the character table of Q.

Solution:

(a) Let us consider the elements of GL2(C) I = ( i 0
0 −i ) , J = ( 0 1

−1 0 ) , K = ( 0 i
i 0 ).

We have I2 = −idC, J2 = −idC, K2 = −idC, moreover

IJK = ( i 0
0 −i ) ( 0 1

−1 0 ) ( 0 i
i 0 ) = ( 0 i

i 0 ) ( 0 i
i 0 ) = −idC.

In particular the subgroup Q can be realized as a subgroup of GL2(C) and
has eight elements: {±idC,±I,±J,±K}.

(b) We will now identify Q with the subgroup of GL2(C) we just defined, to make
explicit computations. Since the matrices ±Id commute with every matrix
in GL2(C), in particular they commute with the elements in Q, hence they
are in the center of Q. Moreover, from the fact that I2 = −1 we get that
I−1 = −I. We can now compute the relation

IJI−1 = − ( i 0
0 −i ) ( 0 1

−1 0 ) ( i 0
0 −i ) = −J.
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Analogously one gets that KJK−1 = −J , in particular the conjugacy class
of J contains the two elements ±J . In the same way one checks that the
conjugacy class of I contains ±I and the conjugacy class of K contains ±K.

(c) The computation above shows that the subgroup generated by I is isomorphic
to Z/4Z and is normal and the same is true for 〈J〉 and 〈K〉. The only other
non trivial subgroup is the center {±1} of Q and clearly the center is normal.

(d) In order to compute the character table we need to find 5 irreducible repre-
sentations of Q, since there are 5 conjugacy classes. Of course there is the
trivial representation, which we will denote by ρ1. Moreover, we saw above
that the subgroup generated by I is normal. Since the quotient Q/I is Z/2Z
we get a representation ρi obtained by composing the sign representation of
Z/2Z with the quotient map. In the same way (quotienting the subgroup gen-
erated by J and K respectively) one gets the representations ρj and ρk. All
the representations ρ1, ρi, ρj and ρk are one-dimensional, hence irreducible.
Moreover, by computing the characters, it is easy to see that they are not
isomorphic, since the characters are different. We have realized Q as a sub-
group of GL2(C). This gives a two dimensional representation ρ of Q which
is irreducible since the eigenspaces of I and J are distinct. We can sum up
the results we just obtained in the character table for Q:

Q {1} {−1} {±i} {±j} {±k}
ρ1 1 1 1 1 1
ρi 1 1 1 -1 -1
ρj 1 1 -1 1 -1
ρk 1 1 -1 -1 1
ρ 2 -2 0 0 0

No hand-in. Enjoy your semester break!
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