- 1. Let \mathbb{F}_p be the field $\mathbb{Z}/p\mathbb{Z}$.
 - (a) How many monic polynomials of degree 2 with coefficients in \mathbb{F}_p are irreducible over \mathbb{F}_p ?
 - (b) How many monic polynomials of degree 3 with coefficients in \mathbb{F}_p are irreducible over \mathbb{F}_p ?
- 2. Let $G = \mathbb{F}_{17}^{\times}$ be the multiplicative group of the field \mathbb{F}_{17} . Does there exist a transitive group action of G
 - (a) on a set with 8 elements?
 - (b) on a set with an odd number of elements?
- 3. Let G be a group of order 12.
 - (a) Must G be abelian?
 - (b) List all possible abelian G of order 12 (up to isomorphism).
- 4. Is the ideal generated by $x^7 + 1$ and $x^5 + 1$ a principal ideal in $\mathbb{F}_2[x]$? If not, why? If so, find a generator.
- 5. How many elements in S_5 have order exactly 6?
- 6. Let d be the smallest index of a proper subgroup of S_8 . What is d? Do there exist two distinct subgroups of S_8 of index d?
- 7. Let G be a finite group. Let H be a subgroup of G which is not normal. Can the index of H be 2? Can the index of H be 3?
- 8. Are the following rings UFDs? Are the rings PIDs?
 - (a) $\mathbb{Z}[x]$
 - (b) $(\mathbb{Z}/2\mathbb{Z})[[x]]$
 - (c) $\mathbb{R}[x]/(x^2-1)$
 - (d) $\mathbb{R}[x]/(x^2+1)$

Explain why or why not.

- 9. Which of the following rings are fields?
 - (a) $\mathbb{Z}[x]/(3, x^2 + x + 1)$
 - (b) $\mathbb{Z}[x]/(4, x^2 + x + 1)$
 - (c) $\mathbb{Z}[x]/(2, x^2 + x + 1)$

Explain why or why not.

- 10. What is the automorphism group Aut(G) of the following groups G?
 - (a) $\mathbb{Z}/2\mathbb{Z}$
 - (b) $\mathbb{Z}/8\mathbb{Z}$
 - (c) Z
 - (d) S_3
- 11. In the ring $\mathbb{C}[x, y]$, do the following inclusions of ideals hold?
 - (a) $(x-1, y-2) \subset (y^2 4x)$
 - (b) $(y^2 4x) \subset (x 1, y 2)$

Prove your answer.

12. Let $a \in \mathbb{Z}$ be a number which satisfies

$$\bar{a} = \bar{3} \mod 15,$$
$$\bar{a} = \bar{1} \mod 17.$$

Does this information suffice to compute $\bar{a} \mod 255$? If so, what is the answer?

- 13. Do all groups of order 4 occur as subgroups of S_4 ? Do all groups of order n occur as subgroups of S_n ?
- 14. Let G be the group of rotational symmetries of a regular solid cube.
 - (a) How many elements does G have?
 - (b) Does there exist a surjective homomorphism from G to S_3 ?
- 15. Does the alternating group A_{17} have any subgroup of index 2 or of index 3? Does the alternating group A_{17} have any elements of order 12?
- 16. Describe all possible homomorphisms
 - (a) $f: S_3 \to \mathbb{Z}/6\mathbb{Z}$,
 - (b) $g: S_5 \to \mathbb{Z}/2\mathbb{Z}$.
- 17. Which of the following statements are true for all groups G of order 56?
 - (a) They contain a subgroup of order 2.
 - (b) They contain a subgroup of order 3.
 - (c) The number of different subgroups of order 8 contained in G is exactly 2.
- 18. In the ring $R = \mathbb{R}[x]$, are the following subsets ideals of R? Prove your answer.
 - (a) $\{f(x) \in R : f(\pi) = 0\}$
 - (b) $\{f(x) \in R : f'(\pi) = 0\}$
 - (c) {f(x) ∈ R : f(i) = 0} (Note: we can evaluate a real polynomial at the complex number i ∈ C)
 (d) {f(x) ∈ R : f(0) = f(1)}
- 19. Compute the conjugate of the group element $a = (3524) \in S_5$ by the element (23). How many elements of S_5 are conjugate to a?

- 20. Let \mathbb{F}_2 be the field with two elements.
 - (a) Show that, for every degree $n \ge 1$, there exists an irreducible polynomial of degree n in $\mathbb{F}_2[x]$.
 - (b) Let $\overline{\mathbb{F}}_2$ be the algebraic closure of \mathbb{F}_2 . Show that $\overline{\mathbb{F}}_2$ is infinite.
- 21. Let A be a module over the ring $\mathbb{C}[x]$. Since $\mathbb{C} \subset \mathbb{C}[x]$, A is a \mathbb{C} -vector space.
 - (a) List all $\mathbb{C}[x]$ -modules A with dim_{$\mathbb{C}} A = 1$, up to isomorphism.</sub>
 - (b) List all $\mathbb{C}[x]$ -modules A with dim_{$\mathbb{C}} A = 2$, up to isomorphism.</sub>
 - (c) List all $\mathbb{C}[x]$ -modules A with dim_{$\mathbb{C}} A = 3$, up to isomorphism.</sub>
- 22. What is the degree over \mathbb{Q} of the splitting field over \mathbb{Q} of the polynomial $x^3 2$?
- 23. Is the field $\mathbb{Q}[1+i] \subset \mathbb{C}$ the splitting field in \mathbb{C} over \mathbb{Q} of some polynomial $f \in \mathbb{Q}[x]$? If so, give an example of such a polynomial f.
- 24. Let R be a commutative ring with unit, and let $R^{\times} \subset R$ be the group of units. Consider elements $X \in R^{\times}$ satisfying $X = X^{-1}$.
 - (a) Show that if R is a field R = k, there are at most two such elements. When is there exactly one such element?
 - (b) What if R is a domain? Are there still only at most two elements $X \in R^{\times}$ with $X = X^{-1}$? If so, give a proof, if not, give a counterexample.
 - (c) What if we let R be a noncommutative ring with unit? Are there still at most two such elements X?
- 25. Let $G = \operatorname{GL}_2(\mathbb{F}_2)$ be the group of invertible 2×2 -matrices with coefficients in \mathbb{F}_2 . Let G act on the set of nonzero vectors in $(\mathbb{F}_2)^2$ in the usual way. Is the induced homomorphism $G \to S_3$ an isomorphism?
- 26. Let G be a group of order p^n (where p is prime) acting on a finite set X. Let $X^G \subset X$ be the set of fixed points. Is it true that $|X| = |X^G| \mod p$? Answer with proof.
- 27. Give an example (with proof) of a group G which is not abelian and not isomorphic to any of the groups S_n (for $n \ge 1$).
- 28. Determine $gcd(k^2 + k + 1, 3k^2 + 4k + 5)$ for each $k \in \mathbb{Z}$.
- 29. Let $\xi = 1.7099759466...$ be the real cube root of 5. Is the field

$$\mathbb{Q}(i,\sqrt{3},\xi) \subset \mathbb{C}$$

the splitting field in \mathbb{C} over \mathbb{Q} of some polynomial $f \in \mathbb{Q}[x]$? If so, give an example of such a polynomial f.

- 30. Is $\sqrt{2} \sqrt{3}$ algebraic over \mathbb{Q} ? If so, find the minimal polynomial over \mathbb{Q} .
- 31. Let \mathbb{F}_q be the field with $q = p^n$ elements where p is an odd prime. For how many elements $\alpha \in \mathbb{F}_q$ does there exist a solution in \mathbb{F}_q of the quadratic equation

$$x^2 - \alpha = 0?$$

- 32. Let R be an integral domain with finitely many elements. Must R be a field? Answer with proof.
- 33. Let \mathbb{F}_q be the field with $q = 2^n$ elements. For how many elements $\alpha \in \mathbb{F}_q$ does there exist a solution in \mathbb{F}_q of the quadratic equation

$$x^2 - \alpha = 0?$$

- 34. Let $\varphi: R \to S$ be a homomorphism of commutative rings.
 - (a) If $I \subset R$ is an ideal, must $\varphi(I)$ be an ideal?
 - (b) If $J \subset S$ is an ideal, must $\varphi^{-1}(J)$ be an ideal?
- 35. Let $R \neq 0$ be a commutative ring whose only ideals are $\{0\}$ and R. Show that R is a field.
- 36. (a) Consider the polynomials $p, q \in \mathbb{Q}[x]$ defined by

$$p = x^3 - \frac{5}{2}x^2 + \frac{3}{2}x$$
 and $q = 2x^2 - x - 3$.

Compute the Euclidean division of p by q.

- (b) Find a single generator of the principal ideal $(p,q)\mathbb{Q}[x] \subseteq \mathbb{Q}[x]$.
- 37. Let R be a UFD. Let $a, b \in R$ be coprime elements (that is, $gcd(a, b) \in R^{\times}$) and $c \in R$. Suppose that a|c and b|c. Prove that ab|c.
- 38. Find the order (if finite) of the following elements:

(a)
$$i, e^{i\sqrt{3}\pi}$$
 and $e^{\frac{2\pi i}{17}}$ in the group \mathbb{C}^{\times} ,
(b) $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ and $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ in the group $\operatorname{GL}_2(\mathbb{C})$,
(c) 1,2 and 3 in \mathbb{F}_{17}^{\times} .

39. Let p be a prime number. For every integer $k \ge 1$, define

$$A_k = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \operatorname{GL}_2(\mathbb{F}_p) \ \middle| \ \det(A)^k = 1 \right\} \subset \operatorname{GL}_2(\mathbb{F}_p).$$

- (a) Show that A_k is a subgroup of $\operatorname{GL}_2(\mathbb{F}_p)$.
- (b) Is A_k a normal subgroup of $\operatorname{GL}_2(\mathbb{F}_p)$?
- (c) What is the index of A_{p-1} in $\operatorname{GL}_2(\mathbb{F}_p)$?
- 40. Let G be a group of order 3^{17} , and let $H \subset G$ be a subgroup of index 3. Must H be normal?
- 41. Show that the center of S_{17} is trivial. What is $[S_{17}, S_{17}]$? Recall: for a group G, the commutator [G, G] is defined as the subgroup of G generated by $\{aba^{-1}b^{-1} : a, b \in G\}$.

42. Let S_n act on $\{1, \ldots, n\}$ via the standard action. Define an action of S_n on

$$\{1,\ldots,n\}\times\{1,\ldots,n\}$$

by

$$g \cdot (i,j) = (g(i),g(j)).$$

Find and describe all the orbits of this action.

- 43. Is there a transitive action of S_5 on a set with 10 elements? Is there a transitive action of S_5 on a set with 20 elements?
- 44. Let $a \in \mathbb{Z} \setminus \{0, \pm 1\}$ be a square-free integer, that is, an integer which is not divisible by any perfect square except 1. Prove that, for each $n \in \mathbb{Z}_{>0}$, the polynomial $x^n - a \in \mathbb{Q}[x]$ is irreducible.
- 45. Let K be a field of characteristic $\neq 2$ and L/K a field extension of degree 2. Show that there exists $\alpha \in L$ such that $\alpha^2 \in K$ and $L = K(\alpha)$.
- 46. Let $L = K(\alpha)/K$ be a field extension such that [L:K] is odd. Prove that $L = K(\alpha^2)$.
- 47. Is the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} countable? Are there real numbers which are not algebraic over \mathbb{Q} ?
- 48. Let M be an $n \times n$ matrix with complex coefficients. Let

$$J = \{ f \in \mathbb{C}[x] \, | \, f(M) = 0 \} \, .$$

In other words, J is the set of polynomials which vanish when evaluated at M.

- (a) Is J an ideal of $\mathbb{C}[x]$?
- (b) Let $g \in J$ be a nonzero polynomial of minimal degree. Can the degree of g be equal to n + 1?
- 49. Let $R = \mathbb{Z}[x, y]$. Can you find a tower of ideals

$$I_0 \subset I_1 \subset I_2 \subset I_3 \subset R$$

where each $I_i \subset R$ is a prime ideal?

50. Consider the cubic polynomial $f(x) = (x^2 + 17x + 1)(x - 17) \in \mathbb{Z}[x]$. For each prime p, let

$$\overline{f}(x) \in \mathbb{F}_p[x]$$

be the polynomial defined by taking the coefficients of $f \mod p$. For which primes does $\overline{f}(x)$ have repeated roots in the algebraic closure of \mathbb{F}_p ?