1. Let \mathbb{F}_{p} be the field $\mathbb{Z} / p \mathbb{Z}$.
(a) How many monic polynomials of degree 2 with coefficients in \mathbb{F}_{p} are irreducible over \mathbb{F}_{p} ?
(b) How many monic polynomials of degree 3 with coefficients in \mathbb{F}_{p} are irreducible over \mathbb{F}_{p} ?
2. Let $G=\mathbb{F}_{17}^{\times}$be the multiplicative group of the field \mathbb{F}_{17}. Does there exist a transitive group action of G
(a) on a set with 8 elements?
(b) on a set with an odd number of elements?
3. Let G be a group of order 12 .
(a) Must G be abelian?
(b) List all possible abelian G of order 12 (up to isomorphism).
4. Is the ideal generated by $x^{7}+1$ and $x^{5}+1$ a principal ideal in $\mathbb{F}_{2}[x]$? If not, why? If so, find a generator.
5. How many elements in S_{5} have order exactly 6 ?
6. Let d be the smallest index of a proper subgroup of S_{8}. What is d ? Do there exist two distinct subgroups of S_{8} of index d ?
7. Let G be a finite group. Let H be a subgroup of G which is not normal. Can the index of H be 2 ? Can the index of H be 3 ?
8. Are the following rings UFDs? Are the rings PIDs?
(a) $\mathbb{Z}[x]$
(b) $(\mathbb{Z} / 2 \mathbb{Z})[[x]]$
(c) $\mathbb{R}[x] /\left(x^{2}-1\right)$
(d) $\mathbb{R}[x] /\left(x^{2}+1\right)$

Explain why or why not.
9. Which of the following rings are fields?
(a) $\mathbb{Z}[x] /\left(3, x^{2}+x+1\right)$
(b) $\mathbb{Z}[x] /\left(4, x^{2}+x+1\right)$
(c) $\mathbb{Z}[x] /\left(2, x^{2}+x+1\right)$

Explain why or why not.
10. What is the automorphism group $\operatorname{Aut}(G)$ of the following groups G ?
(a) $\mathbb{Z} / 2 \mathbb{Z}$
(b) $\mathbb{Z} / 8 \mathbb{Z}$
(c) \mathbb{Z}
(d) S_{3}
11. In the ring $\mathbb{C}[x, y]$, do the following inclusions of ideals hold?
(a) $(x-1, y-2) \subset\left(y^{2}-4 x\right)$
(b) $\left(y^{2}-4 x\right) \subset(x-1, y-2)$

Prove your answer.
12. Let $a \in \mathbb{Z}$ be a number which satisfies

$$
\begin{aligned}
& \bar{a}=\overline{3} \bmod 15, \\
& \bar{a}=\overline{1} \bmod 17 .
\end{aligned}
$$

Does this information suffice to compute $\bar{a} \bmod 255$? If so, what is the answer?
13. Do all groups of order 4 occur as subgroups of S_{4} ? Do all groups of order n occur as subgroups of S_{n} ?
14. Let G be the group of rotational symmetries of a regular solid cube.
(a) How many elements does G have?
(b) Does there exist a surjective homomorphism from G to S_{3} ?
15. Does the alternating group A_{17} have any subgroup of index 2 or of index 3? Does the alternating group A_{17} have any elements of order 12?
16. Describe all possible homomorphisms
(a) $f: S_{3} \rightarrow \mathbb{Z} / 6 \mathbb{Z}$,
(b) $g: S_{5} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$.
17. Which of the following statements are true for all groups G of order 56 ?
(a) They contain a subgroup of order 2 .
(b) They contain a subgroup of order 3.
(c) The number of different subgroups of order 8 contained in G is exactly 2 .
18. In the ring $R=\mathbb{R}[x]$, are the following subsets ideals of R ? Prove your answer.
(a) $\{f(x) \in R: f(\pi)=0\}$
(b) $\left\{f(x) \in R: f^{\prime}(\pi)=0\right\}$
(c) $\{f(x) \in R: f(i)=0\}$
(Note: we can evaluate a real polynomial at the complex number $i \in \mathbb{C}$)
(d) $\{f(x) \in R: f(0)=f(1)\}$
19. Compute the conjugate of the group element $a=(3524) \in S_{5}$ by the element (23). How many elements of S_{5} are conjugate to a ?
20. Let \mathbb{F}_{2} be the field with two elements.
(a) Show that, for every degree $n \geq 1$, there exists an irreducible polynomial of degree n in $\mathbb{F}_{2}[x]$.
(b) Let $\overline{\mathbb{F}}_{2}$ be the algebraic closure of \mathbb{F}_{2}. Show that $\overline{\mathbb{F}}_{2}$ is infinite.
21. Let A be a module over the ring $\mathbb{C}[x]$. Since $\mathbb{C} \subset \mathbb{C}[x], A$ is a \mathbb{C}-vector space.
(a) List all $\mathbb{C}[x]$-modules A with $\operatorname{dim}_{\mathbb{C}} A=1$, up to isomorphism.
(b) List all $\mathbb{C}[x]$-modules A with $\operatorname{dim}_{\mathbb{C}} A=2$, up to isomorphism.
(c) List all $\mathbb{C}[x]$-modules A with $\operatorname{dim}_{\mathbb{C}} A=3$, up to isomorphism.
22. What is the degree over \mathbb{Q} of the splitting field over \mathbb{Q} of the polynomial $x^{3}-2$?
23. Is the field $\mathbb{Q}[1+i] \subset \mathbb{C}$ the splitting field in \mathbb{C} over \mathbb{Q} of some polynomial $f \in \mathbb{Q}[x]$? If so, give an example of such a polynomial f.
24. Let R be a commutative ring with unit, and let $R^{\times} \subset R$ be the group of units. Consider elements $X \in R^{\times}$satisfying $X=X^{-1}$.
(a) Show that if R is a field $R=k$, there are at most two such elements. When is there exactly one such element?
(b) What if R is a domain? Are there still only at most two elements $X \in R^{\times}$with $X=X^{-1}$? If so, give a proof, if not, give a counterexample.
(c) What if we let R be a noncommutative ring with unit? Are there still at most two such elements X ?
25. Let $G=\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$ be the group of invertible 2×2-matrices with coefficients in \mathbb{F}_{2}. Let G act on the set of nonzero vectors in $\left(\mathbb{F}_{2}\right)^{2}$ in the usual way. Is the induced homomorphism $G \rightarrow S_{3}$ an isomorphism?
26. Let G be a group of order p^{n} (where p is prime) acting on a finite set X. Let $X^{G} \subset X$ be the set of fixed points. Is it true that $|X|=\left|X^{G}\right| \bmod p$? Answer with proof.
27. Give an example (with proof) of a group G which is not abelian and not isomorphic to any of the groups S_{n} (for $n \geq 1$).
28. Determine $\operatorname{gcd}\left(k^{2}+k+1,3 k^{2}+4 k+5\right)$ for each $k \in \mathbb{Z}$.

29 . Let $\xi=1.7099759466 \ldots$ be the real cube root of 5 . Is the field

$$
\mathbb{Q}(i, \sqrt{3}, \xi) \subset \mathbb{C}
$$

the splitting field in \mathbb{C} over \mathbb{Q} of some polynomial $f \in \mathbb{Q}[x]$? If so, give an example of such a polynomial f.
30. Is $\sqrt{2}-\sqrt{3}$ algebraic over \mathbb{Q} ? If so, find the minimal polynomial over \mathbb{Q}.
31. Let \mathbb{F}_{q} be the field with $q=p^{n}$ elements where p is an odd prime. For how many elements $\alpha \in \mathbb{F}_{q}$ does there exist a solution in \mathbb{F}_{q} of the quadratic equation

$$
x^{2}-\alpha=0 ?
$$

32. Let R be an integral domain with finitely many elements. Must R be a field? Answer with proof.
33. Let \mathbb{F}_{q} be the field with $q=2^{n}$ elements. For how many elements $\alpha \in \mathbb{F}_{q}$ does there exist a solution in \mathbb{F}_{q} of the quadratic equation

$$
x^{2}-\alpha=0 ?
$$

34. Let $\varphi: R \rightarrow S$ be a homomorphism of commutative rings.
(a) If $I \subset R$ is an ideal, must $\varphi(I)$ be an ideal?
(b) If $J \subset S$ is an ideal, must $\varphi^{-1}(J)$ be an ideal?
35. Let $R \neq 0$ be a commutative ring whose only ideals are $\{0\}$ and R. Show that R is a field.
36. (a) Consider the polynomials $p, q \in \mathbb{Q}[x]$ defined by

$$
p=x^{3}-\frac{5}{2} x^{2}+\frac{3}{2} x \text { and } q=2 x^{2}-x-3 .
$$

Compute the Euclidean division of p by q.
(b) Find a single generator of the principal ideal $(p, q) \mathbb{Q}[x] \subseteq \mathbb{Q}[x]$.
37. Let R be a UFD. Let $a, b \in R$ be coprime elements (that is, $\operatorname{gcd}(a, b) \in R^{\times}$) and $c \in R$. Suppose that $a \mid c$ and $b \mid c$. Prove that $a b \mid c$.
38. Find the order (if finite) of the following elements:
(a) $i, e^{i \sqrt{3} \pi}$ and $e^{\frac{2 \pi i}{17}}$ in the group \mathbb{C}^{\times},
(b) $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ and $\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$ in the group $\mathrm{GL}_{2}(\mathbb{C})$,
(c) 1,2 and 3 in \mathbb{F}_{17}^{\times}.
39. Let p be a prime number. For every integer $k \geq 1$, define

$$
A_{k}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \right\rvert\, \operatorname{det}(A)^{k}=1\right\} \subset \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) .
$$

(a) Show that A_{k} is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.
(b) Is A_{k} a normal subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$?
(c) What is the index of A_{p-1} in $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$?
40. Let G be a group of order 3^{17}, and let $H \subset G$ be a subgroup of index 3 . Must H be normal?
41. Show that the center of S_{17} is trivial. What is [S_{17}, S_{17}]? Recall: for a group G, the commutator $[G, G]$ is defined as the subgroup of G generated by $\left\{a b a^{-1} b^{-1}: a, b \in G\right\}$.
42. Let S_{n} act on $\{1, \ldots, n\}$ via the standard action. Define an action of S_{n} on

$$
\{1, \ldots, n\} \times\{1, \ldots, n\}
$$

by

$$
g \cdot(i, j)=(g(i), g(j)) .
$$

Find and describe all the orbits of this action.
43. Is there a transitive action of S_{5} on a set with 10 elements? Is there a transitive action of S_{5} on a set with 20 elements?
44. Let $a \in \mathbb{Z} \backslash\{0, \pm 1\}$ be a square-free integer, that is, an integer which is not divisible by any perfect square except 1 . Prove that, for each $n \in \mathbb{Z}_{>0}$, the polynomial $x^{n}-a \in \mathbb{Q}[x]$ is irreducible.
45. Let K be a field of characteristic $\neq 2$ and L / K a field extension of degree 2 . Show that there exists $\alpha \in L$ such that $\alpha^{2} \in K$ and $L=K(\alpha)$.
46. Let $L=K(\alpha) / K$ be a field extension such that $[L: K]$ is odd. Prove that $L=K\left(\alpha^{2}\right)$.
47. Is the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} countable? Are there real numbers which are not algebraic over \mathbb{Q} ?
48. Let M be an $n \times n$ matrix with complex coefficients. Let

$$
J=\{f \in \mathbb{C}[x] \mid f(M)=0\} .
$$

In other words, J is the set of polynomials which vanish when evaluated at M.
(a) Is J an ideal of $\mathbb{C}[x]$?
(b) Let $g \in J$ be a nonzero polynomial of minimal degree. Can the degree of g be equal to $n+1$?
49. Let $R=\mathbb{Z}[x, y]$. Can you find a tower of ideals

$$
I_{0} \subset I_{1} \subset I_{2} \subset I_{3} \subset R
$$

where each $I_{i} \subset R$ is a prime ideal?
50. Consider the cubic polynomial $f(x)=\left(x^{2}+17 x+1\right)(x-17) \in \mathbb{Z}[x]$. For each prime p, let

$$
\bar{f}(x) \in \mathbb{F}_{p}[x]
$$

be the polynomial defined by taking the coefficients of $f \bmod p$. For which primes does $\bar{f}(x)$ have repeated roots in the algebraic closure of \mathbb{F}_{p} ?

