Multiple Choice.

1. Let G be a group and H a subgroup of G. Which of the following statements are always true in this case?
(a) For G finite, the index of H in G divides the order of G.
(b) G contains a normal subgroup whose index is a prime number.
(c) If H is abelian and normal in G and G / H is abelian, then G is abelian.
(d) If the index of H in G is two, the subgroup H is a normal subgroup of G.
(e) For any two simple groups G_{1}, G_{2}, their direct sum $G_{1} \oplus G_{2}$ is also simple.

Recall: A group G is called simple if the only normal subgroups of G are $\{1\}$ and G.
2. Let G be a group acting on a set X and let H be a subgroup of G. Which of the following statements are always true in this case?
(a) For any field k, the action of the group $\mathrm{SL}_{n}(k)$ on k^{n} where a matrix $A \in \mathrm{SL}_{n}(k)$ acts on a vector $v \in k^{n}$ by multiplication from the left is a faithful action.
(b) If there exists $x \in X$ with $\operatorname{Stab}_{G}(x)=\{1\}$ then the action of G on X is faithful.
(c) If the action of H on X is transitive, so is the action of G on X.
(d) There is a map from the set of G-orbits to the set of H-orbits which sends $G x$ to $H x$.
(e) The only action of the group $G=\mathbb{Z} / 2 \mathbb{Z}$ on the set $X=\{1,2,3\}$ is the trivial action $g x=x$ for $g \in G, x \in X$.

Recall: An action of G on X is called faithful if the only element $g \in G$ satisfying $g x=x$ for all $x \in X$ is the neutral element $g=1$.
3. (a) The group S_{n} has a subgroup of order m for each $m=1,2, \ldots, n$.
(b) The 6 -cycle $\sigma=(123456) \in S_{6}$ has a decomposition into a product $\sigma=\tau_{1} \tau_{2} \cdots \tau_{m}$ of transpositions $\tau_{1}, \tau_{2}, \ldots, \tau_{m} \in S_{6}$ and for each such decomposition the number m of transpositions is odd.
(c) The 6 -cycle $\sigma=(123456) \in S_{6}$ cannot be written as the product of 3 transpositions.
(d) The group A_{5} is the only simple subgroup of S_{5}.
(e) The subgroup $G=\langle(12),(345)\rangle \subset S_{5}$ is isomorphic to S_{6}.
4. Let A be a commutative ring and I an ideal of A. Which of the following statements are then always true?
(a) For all $f, g \in A[X]$ of degree 3 , we have that $f+g$ also has degree 3 .
(b) If I is a prime ideal, then for $a, b \in A / I$ with $a \neq 0, b \neq 0$ we have $a b \neq 0$.
(c) For any PID A, also $A[X]$ is a PID.
(d) The ideal $I=(X)$ in $A[X]$ is maximal.
(e) If $I \subsetneq A$ is a proper ideal, then there exists a prime ideal of A containing I.

Recall: We say that a polynomial $f \in A[X]$ has degree m if f has the form $f(X)=$ $a_{m} X^{m}+a_{m-1} X^{m-1}+\ldots+a_{1} X+a_{0}$ with $a_{m} \neq 0$.
5. Let A and B be commutative rings and $f: A \rightarrow B$ a ring homomorphism. Let I be an ideal of A and denote by $p: A \rightarrow A / I$ the usual projection. Which of the following statements are then always true?
(a) There exists a ring homomorphism $g: A / I \rightarrow B$ satisfying $f=g \circ p$ if and only if f vanishes on I.
(b) If $f \neq 0$ and B is an integral domain, then $A / \operatorname{ker}(f)$ is an integral domain.
(c) If f is surjective, then B is isomorphic to a subring of A.
(d) For every $b_{1}, b_{2} \in B$ there exists a unique ring homomorphism $h: A[X, Y] \rightarrow B$ sending $X \mapsto b_{1}, Y \mapsto b_{2}$ and such that $\left.h\right|_{A}=f$, where we use the natural inclusion $A \subset A[X, Y]$.
(e) If $J \subset B$ is a maximal ideal and $f: A \rightarrow B$ is surjective, then $f^{-1}(J)$ is a maximal ideal in A.
6. Let $R=\mathbb{Z} / 30 \mathbb{Z}$.
(a) The natural map $R \rightarrow(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 3 \mathbb{Z}) \oplus(\mathbb{Z} / 5 \mathbb{Z})$ sending \bar{a} to $(\bar{a}, \bar{a}, \bar{a})$ is an isomorphism.
(b) There exist exactly 3 elements of order 3 in the group $(R,+, 0)$.
(c) The ideal $(\overline{5}) \subset R$ is maximal.
(d) There exist exactly 3 distinct ring homomorphisms $R \rightarrow \mathbb{Z} / 3 \mathbb{Z}$.
(e) Every ideal in R is a principal ideal.
7. (a) Every torsion-free \mathbb{Z}-module is free.
(b) Every free \mathbb{Z}-module A with $A \neq 0$ contains \mathbb{Z} as a submodule.
(c) There are, up to isomorphism, 4 different abelian groups of 8 elements.
(d) If A is a finitely generated \mathbb{Z}-module in which each element has finite order, then A is finite.
(e) If A is a finitely generated \mathbb{Z}-module in which each nonzero element has infinite order, then A is free.
8. Let L / K be a field extension.
(a) If $\operatorname{dim}_{K} L=17$ then the field extension is algebraic.
(b) If $f \in K[T]$ has two distinct roots in L, then f cannot be irreducible in $K[T]$.
(c) If $\alpha \in L \backslash\{0\}$ is transcendental over K, then also $1 / \alpha$ is transcendental.
(d) If $\alpha \in L$ is algebraic and L / K is of finite degree, then $\operatorname{deg}(\operatorname{irr}(\alpha ; k))$ divides $[L: K]$.
(e) For $\alpha \in L$, the field $K(\alpha) \subset L$ is equal to the K-vector subspace of L spanned by $1, \alpha, \alpha^{2}, \ldots$.

Recall: If $\alpha \in L$ is algebraic over K, its minimal polynomial $\operatorname{irr}(\alpha ; k)$ is the unique monic polynomial in $K[X]$ of minimal degree among all nonzero polynomials in $K[X]$ that vanish on α.
9. (a) For every finite field \mathbb{F}, the characteristic char (\mathbb{F}) divides the number of elements $|\mathbb{F}|$ of \mathbb{F}.
(b) If K is an extension of degree 2 of the finite field \mathbb{F}_{4}, then K is isomorphic to \mathbb{F}_{8}.
(c) For each element $a \in \mathbb{F}_{q} \backslash\{0\}$ one has $a^{q}=1$.
(d) The polynomial $X^{121}-1$ has exactly 10 distinct roots in \mathbb{F}_{11}.
(e) If E is a finite field and F / E is an algebraic extension, then F is a finite field.

Recall: For a field K the characteristic char (K) is defined to be $\operatorname{char}(K)=0$ if there exists no integer $n \in \mathbb{Z}_{>0}$ with $n \cdot 1_{K}=0_{K}$. Otherwise, $\operatorname{char}(K)$ is defined to be the minimal positive integer $n \in \mathbb{Z}_{>0}$ with $n \cdot 1_{K}=0_{K}$.
10. (a) The splitting field in \mathbb{C} of the \mathbb{Q}-polynomial $X^{2}-2$ is $\mathbb{Q}(\sqrt{2})$.
(b) The splitting field in \mathbb{C} of the \mathbb{Q}-polynomial $X^{2}+5$ is $\mathbb{Q}(\sqrt{5}, i)$.
(c) The splitting field in \mathbb{C} of the \mathbb{Q}-polynomial $X^{17}-1$ is isomorphic to $\mathbb{Q}[X] /\left(X^{17}-1\right)$.
(d) For any $\alpha \in \mathbb{C}$ there exists a \mathbb{Q}-polynomial $f(X) \in \mathbb{Q}[X]$ such that $\mathbb{Q}(\alpha)$ is the splitting field in \mathbb{C} of $f(X)$.
(e) The field $\mathbb{Q}(\sqrt{7}, i)$ has degree 4 over \mathbb{Q}.

