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Multiple Choice.

1. Let G be a group and H a subgroup of G. Which of the following statements are always
true in this case?

(a) For G finite, the index of H in G divides the order of G.

(b) G contains a normal subgroup whose index is a prime number.

(c) If H is abelian and normal in G and G/H is abelian, then G is abelian.

(d) If the index of H in G is two, the subgroup H is a normal subgroup of G.

(e) For any two simple groups G1, G2, their direct sum G1 ⊕G2 is also simple.

Recall: A group G is called simple if the only normal subgroups of G are {1} and G.

2. Let G be a group acting on a set X and let H be a subgroup of G. Which of the following
statements are always true in this case?

(a) For any field k, the action of the group SLn(k) on kn where a matrix A ∈ SLn(k)
acts on a vector v ∈ kn by multiplication from the left is a faithful action.

(b) If there exists x ∈ X with StabG(x) = {1} then the action of G on X is faithful.

(c) If the action of H on X is transitive, so is the action of G on X.

(d) There is a map from the set of G-orbits to the set of H-orbits which sends Gx to
Hx.

(e) The only action of the group G = Z/2Z on the set X = {1, 2, 3} is the trivial action
gx = x for g ∈ G, x ∈ X.

Recall: An action of G on X is called faithful if the only element g ∈ G satisfying gx = x
for all x ∈ X is the neutral element g = 1.

3. (a) The group Sn has a subgroup of order m for each m = 1, 2, . . . , n.

(b) The 6-cycle σ = (1 2 3 4 5 6) ∈ S6 has a decomposition into a product σ = τ1τ2 · · · τm
of transpositions τ1, τ2, . . . , τm ∈ S6 and for each such decomposition the number m
of transpositions is odd.

(c) The 6-cycle σ = (1 2 3 4 5 6) ∈ S6 cannot be written as the product of 3 transpositi-
ons.

(d) The group A5 is the only simple subgroup of S5.

(e) The subgroup G = 〈(1 2), (3 4 5)〉 ⊂ S5 is isomorphic to S6.
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4. Let A be a commutative ring and I an ideal of A. Which of the following statements
are then always true?

(a) For all f, g ∈ A[X] of degree 3, we have that f + g also has degree 3.

(b) If I is a prime ideal, then for a, b ∈ A/I with a 6= 0, b 6= 0 we have ab 6= 0.

(c) For any PID A, also A[X] is a PID.

(d) The ideal I = (X) in A[X] is maximal.

(e) If I ( A is a proper ideal, then there exists a prime ideal of A containing I.

Recall: We say that a polynomial f ∈ A[X] has degree m if f has the form f(X) =
amX

m + am−1X
m−1 + . . .+ a1X + a0 with am 6= 0.

5. Let A and B be commutative rings and f : A → B a ring homomorphism. Let I be
an ideal of A and denote by p : A → A/I the usual projection. Which of the following
statements are then always true?

(a) There exists a ring homomorphism g : A/I → B satisfying f = g ◦ p
if and only if f vanishes on I.

(b) If f 6= 0 and B is an integral domain, then A/ ker(f) is an integral domain.

(c) If f is surjective, then B is isomorphic to a subring of A.

(d) For every b1, b2 ∈ B there exists a unique ring homomorphism h : A[X,Y ] → B
sending X 7→ b1, Y 7→ b2 and such that h|A = f , where we use the natural inclusion
A ⊂ A[X,Y ].

(e) If J ⊂ B is a maximal ideal and f : A→ B is surjective, then f−1(J) is a maximal
ideal in A.

6. Let R = Z/30Z.

(a) The natural map R → (Z/2Z) ⊕ (Z/3Z) ⊕ (Z/5Z) sending ā to (ā, ā, ā) is an iso-
morphism.

(b) There exist exactly 3 elements of order 3 in the group (R,+, 0).

(c) The ideal (5̄) ⊂ R is maximal.

(d) There exist exactly 3 distinct ring homomorphisms R→ Z/3Z.

(e) Every ideal in R is a principal ideal.

7. (a) Every torsion-free Z-module is free.

(b) Every free Z-module A with A 6= 0 contains Z as a submodule.

(c) There are, up to isomorphism, 4 different abelian groups of 8 elements.

(d) If A is a finitely generated Z-module in which each element has finite order, then A
is finite.

(e) If A is a finitely generated Z-module in which each nonzero element has infinite
order, then A is free.
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8. Let L/K be a field extension.

(a) If dimK L = 17 then the field extension is algebraic.

(b) If f ∈ K[T ] has two distinct roots in L, then f cannot be irreducible in K[T ].

(c) If α ∈ L \ {0} is transcendental over K, then also 1/α is transcendental.

(d) If α ∈ L is algebraic and L/K is of finite degree, then deg(irr(α; k)) divides [L : K].

(e) For α ∈ L, the field K(α) ⊂ L is equal to the K-vector subspace of L spanned by
1, α, α2, . . ..

Recall: If α ∈ L is algebraic over K, its minimal polynomial irr(α; k) is the unique
monic polynomial in K[X] of minimal degree among all nonzero polynomials in K[X]
that vanish on α.

9. (a) For every finite field F, the characteristic char(F) divides the number of elements
|F| of F.

(b) If K is an extension of degree 2 of the finite field F4, then K is isomorphic to F8.

(c) For each element a ∈ Fq \ {0} one has aq = 1.

(d) The polynomial X121 − 1 has exactly 10 distinct roots in F11.

(e) If E is a finite field and F/E is an algebraic extension, then F is a finite field.

Recall: For a field K the characteristic char(K) is defined to be char(K) = 0 if there
exists no integer n ∈ Z>0 with n · 1K = 0K . Otherwise, char(K) is defined to be the
minimal positive integer n ∈ Z>0 with n · 1K = 0K .

10. (a) The splitting field in C of the Q-polynomial X2 − 2 is Q(
√

2).

(b) The splitting field in C of the Q-polynomial X2 + 5 is Q(
√

5, i).

(c) The splitting field in C of the Q-polynomial X17−1 is isomorphic to Q[X]/(X17−1).

(d) For any α ∈ C there exists a Q-polynomial f(X) ∈ Q[X] such that Q(α) is the
splitting field in C of f(X).

(e) The field Q(
√

7, i) has degree 4 over Q.


