Multiple Choice.

- 1. Let G be a group and H a subgroup of G. Which of the following statements are *always* true in this case?
 - (a) For G finite, the index of H in G divides the order of G.
 - (b) G contains a normal subgroup whose index is a prime number.
 - (c) If H is abelian and normal in G and G/H is abelian, then G is abelian.
 - (d) If the index of H in G is two, the subgroup H is a normal subgroup of G.
 - (e) For any two simple groups G_1, G_2 , their direct sum $G_1 \oplus G_2$ is also simple.

Recall: A group G is called *simple* if the only normal subgroups of G are $\{1\}$ and G.

- 2. Let G be a group acting on a set X and let H be a subgroup of G. Which of the following statements are *always* true in this case?
 - (a) For any field k, the action of the group $SL_n(k)$ on k^n where a matrix $A \in SL_n(k)$ acts on a vector $v \in k^n$ by multiplication from the left is a faithful action.
 - (b) If there exists $x \in X$ with $\operatorname{Stab}_G(x) = \{1\}$ then the action of G on X is faithful.
 - (c) If the action of H on X is transitive, so is the action of G on X.
 - (d) There is a map from the set of G-orbits to the set of H-orbits which sends Gx to Hx.
 - (e) The only action of the group $G = \mathbb{Z}/2\mathbb{Z}$ on the set $X = \{1, 2, 3\}$ is the trivial action gx = x for $g \in G, x \in X$.

Recall: An action of G on X is called *faithful* if the only element $g \in G$ satisfying gx = x for all $x \in X$ is the neutral element g = 1.

- 3. (a) The group S_n has a subgroup of order m for each m = 1, 2, ..., n.
 - (b) The 6-cycle $\sigma = (1\,2\,3\,4\,5\,6) \in S_6$ has a decomposition into a product $\sigma = \tau_1 \tau_2 \cdots \tau_m$ of transpositions $\tau_1, \tau_2, \ldots, \tau_m \in S_6$ and for each such decomposition the number m of transpositions is odd.
 - (c) The 6-cycle $\sigma = (123456) \in S_6$ cannot be written as the product of 3 transpositions.
 - (d) The group A_5 is the only simple subgroup of S_5 .
 - (e) The subgroup $G = \langle (12), (345) \rangle \subset S_5$ is isomorphic to S_6 .

ETH Zürich	Midterm	FS19
	Algebra I/II	Prof. Rahul Pandharipande

- 4. Let A be a commutative ring and I an ideal of A. Which of the following statements are then *always* true?
 - (a) For all $f, g \in A[X]$ of degree 3, we have that f + g also has degree 3.
 - (b) If I is a prime ideal, then for $a, b \in A/I$ with $a \neq 0, b \neq 0$ we have $ab \neq 0$.
 - (c) For any PID A, also A[X] is a PID.
 - (d) The ideal I = (X) in A[X] is maximal.
 - (e) If $I \subsetneq A$ is a proper ideal, then there exists a prime ideal of A containing I.

Recall: We say that a polynomial $f \in A[X]$ has degree m if f has the form $f(X) = a_m X^m + a_{m-1} X^{m-1} + \ldots + a_1 X + a_0$ with $a_m \neq 0$.

- 5. Let A and B be commutative rings and $f : A \to B$ a ring homomorphism. Let I be an ideal of A and denote by $p : A \to A/I$ the usual projection. Which of the following statements are then *always* true?
 - (a) There exists a ring homomorphism $g: A/I \to B$ satisfying $f = g \circ p$ if and only if f vanishes on I.
 - (b) If $f \neq 0$ and B is an integral domain, then $A/\ker(f)$ is an integral domain.
 - (c) If f is surjective, then B is isomorphic to a subring of A.
 - (d) For every $b_1, b_2 \in B$ there exists a unique ring homomorphism $h : A[X, Y] \to B$ sending $X \mapsto b_1, Y \mapsto b_2$ and such that $h|_A = f$, where we use the natural inclusion $A \subset A[X, Y]$.
 - (e) If $J \subset B$ is a maximal ideal and $f : A \to B$ is surjective, then $f^{-1}(J)$ is a maximal ideal in A.
- 6. Let $R = \mathbb{Z}/30\mathbb{Z}$.
 - (a) The natural map $R \to (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/3\mathbb{Z}) \oplus (\mathbb{Z}/5\mathbb{Z})$ sending \bar{a} to $(\bar{a}, \bar{a}, \bar{a})$ is an isomorphism.
 - (b) There exist exactly 3 elements of order 3 in the group (R, +, 0).
 - (c) The ideal $(\overline{5}) \subset R$ is maximal.
 - (d) There exist exactly 3 distinct ring homomorphisms $R \to \mathbb{Z}/3\mathbb{Z}$.
 - (e) Every ideal in R is a principal ideal.
- 7. (a) Every torsion-free \mathbb{Z} -module is free.
 - (b) Every free \mathbb{Z} -module A with $A \neq 0$ contains \mathbb{Z} as a submodule.
 - (c) There are, up to isomorphism, 4 different abelian groups of 8 elements.
 - (d) If A is a finitely generated \mathbb{Z} -module in which each element has finite order, then A is finite.
 - (e) If A is a finitely generated \mathbb{Z} -module in which each nonzero element has infinite order, then A is free.

- 8. Let L/K be a field extension.
 - (a) If $\dim_K L = 17$ then the field extension is algebraic.
 - (b) If $f \in K[T]$ has two distinct roots in L, then f cannot be irreducible in K[T].
 - (c) If $\alpha \in L \setminus \{0\}$ is transcendental over K, then also $1/\alpha$ is transcendental.
 - (d) If $\alpha \in L$ is algebraic and L/K is of finite degree, then deg(irr($\alpha; k$)) divides [L:K].
 - (e) For $\alpha \in L$, the field $K(\alpha) \subset L$ is equal to the K-vector subspace of L spanned by $1, \alpha, \alpha^2, \ldots$

Recall: If $\alpha \in L$ is algebraic over K, its minimal polynomial $irr(\alpha; k)$ is the unique monic polynomial in K[X] of minimal degree among all nonzero polynomials in K[X] that vanish on α .

- 9. (a) For every finite field F, the characteristic char(F) divides the number of elements $|\mathbb{F}|$ of F.
 - (b) If K is an extension of degree 2 of the finite field \mathbb{F}_4 , then K is isomorphic to \mathbb{F}_8 .
 - (c) For each element $a \in \mathbb{F}_q \setminus \{0\}$ one has $a^q = 1$.
 - (d) The polynomial $X^{121} 1$ has exactly 10 distinct roots in \mathbb{F}_{11} .
 - (e) If E is a finite field and F/E is an algebraic extension, then F is a finite field.

Recall: For a field K the characteristic char(K) is defined to be char(K) = 0 if there exists no integer $n \in \mathbb{Z}_{>0}$ with $n \cdot 1_K = 0_K$. Otherwise, char(K) is defined to be the minimal positive integer $n \in \mathbb{Z}_{>0}$ with $n \cdot 1_K = 0_K$.

- 10. (a) The splitting field in \mathbb{C} of the \mathbb{Q} -polynomial $X^2 2$ is $\mathbb{Q}(\sqrt{2})$.
 - (b) The splitting field in \mathbb{C} of the \mathbb{Q} -polynomial $X^2 + 5$ is $\mathbb{Q}(\sqrt{5}, i)$.
 - (c) The splitting field in \mathbb{C} of the \mathbb{Q} -polynomial $X^{17}-1$ is isomorphic to $\mathbb{Q}[X]/(X^{17}-1)$.
 - (d) For any $\alpha \in \mathbb{C}$ there exists a \mathbb{Q} -polynomial $f(X) \in \mathbb{Q}[X]$ such that $\mathbb{Q}(\alpha)$ is the splitting field in \mathbb{C} of f(X).
 - (e) The field $\mathbb{Q}(\sqrt{7}, i)$ has degree 4 over \mathbb{Q} .