ETH Zürich FS 2019

11.1.

D-MATH

(a) T ist linear. $\|\cdot\|_X$ ist ein norm (ähnlich L^{∞}). Sei $f_n(x) = \frac{\sin(n^2x)}{n}$. Wir haben, dass $||f_n||_X \to 0$. Aber

$$T(f_n) = \frac{n^2}{n}$$

und dann

$$T(f_n) \to \infty \neq T(0) = 0.$$

Somit T ist nicht stetig.

(b) T ist nicht linear. $\|\cdot\|_p$ ist ein norm, und dann wir haben $\|\|f\|_p - \|g\|_p \le \|f - g\|_p$. Wir fixieren $f_0 \in L^p$, $\varepsilon > 0$, und sei $\delta := \varepsilon > 0$. Für alle $f \in L^p$ mit $||f - f_0||_p < \delta$:

$$|T(f) - T(f_0)| = |||f||_p - ||f_0||_p| \le ||f - f_0||_p < \delta = \varepsilon.$$

Somit T ist stetig.

(c) T ist linear, und

$$||T|| = \sup_{\|f\|_p = 1} ||T(f)||_p = \sup_{\|f\|_p = 1} \left(\int_0^1 x^p |f(x)|^p dx \right)^{1/p} \le \sup_{\|f\|_p = 1} \left(\int_0^1 |f(x)|^p dx \right)^{1/p} = 1.$$

Mit Satz II.7.1 T ist stetig. Wir bewiesen dass ||T|| = 1. Sei $0 < \varepsilon < 1$ und $f_{\varepsilon} = \varepsilon^{-1/p} I_{[1-\varepsilon,1]}$. Wir haben $||f_{\varepsilon}||_p = \left(\int_{1-\varepsilon}^1 \varepsilon^{-1} dx\right)^{1/p} = 1$. Ausserdem,

$$||T(f_{\varepsilon})||_{p} = \left(\int_{1-\varepsilon}^{1} x^{p} \varepsilon^{-1} dx\right)^{1/p} = \left(\frac{1 - (1-\varepsilon)^{p+1}}{\varepsilon(p+1)}\right)^{1/p}.$$

Bemerken Sie dass $(1-\varepsilon)^{p+1}=1-(p+1)\varepsilon+O(\varepsilon^2), \varepsilon\to 0$. Somit

$$||T(f_{\varepsilon})||_p = 1 + O(\varepsilon^{1/p}).$$

Wir schliessen dass

$$||T|| \ge ||T(f_{\varepsilon})||_p = 1 + O(\varepsilon^{1/p})$$

d.h. $||T|| \ge 1$, und wir haben ||T|| = 1.

11.2. Schritte 1. Wir annehmen, dass μ endlich ist. Sei $g_n \in \mathcal{E}_+$ mit $g_n \nearrow |g|$, und $f_n = g_n^{q-1} \operatorname{sign} g$. Dann $f_n \in \overline{\mathcal{L}}^p$ (μ ist endlich) und

$$\left| \int g_n^q d\mu \right| = \left| \int g_n f_n \operatorname{sign} g d\mu \right| \le \left| \int g f_n d\mu \right| \le C \|f_n\|_{L^p}.$$

Aber

$$||f_n||_{L^p} = \left(\int g_n^{(q-1)p} d\mu\right)^{\frac{1}{p}}.$$

Weil $\frac{1}{p}+\frac{1}{q}=1,$ wir haben $p=\frac{q}{q-1}$ und dann

$$||f_n||_{L^p} = ||g_n||_{L^q}^{q-1}.$$

Somit

$$||g_n||_{L^q}^q \le C||g_n||_{L^q}^{q-1}$$

d.h.

$$||g_n||_{L^q} \leq C.$$

Mit Satz II.3.1

$$||g||_{L^q} = \lim_{n \to \infty} ||g_n||_{L^q} \le C.$$

Wir schliessen dass $g \in \overline{\mathcal{L}}^q$.

Schritte 2. Falls μ σ -endlich, sei $\Omega_k \nearrow \Omega$ und $\mu(\Omega_k) < \infty$. Mit Schritte 1, $g_k := gI_{\Omega_k} \in \overline{\mathcal{L}}^q$ und $\|g_k\|_{L^q} \le C$. Mit Satz II.3.1

$$||g||_{L^q} = \lim_{k \to \infty} ||g_k||_{L^q} \le C.$$

11.3.

(a) $L^p \cap L^q$ ist ein Linearraum weil L^p und L^q sind. $\|\cdot\| = \|\cdot\|_p + \|\cdot\|_q$ ist eine Norm auf $L^p \cap L^q$, weil $\|\cdot\|_q$ und $\|\cdot\|_p$ sind.

Sei eine Cauchy Folge $(f_n) \in L^p \cap L^q$. Wir müssen zeigen, dass eine Funktion $f \in L^p \cap L^q$ existiert mit $||f_n - f|| \to 0$. Wir haben

$$||f_m - f_n|| = ||f_m - f_n||_p + ||f_m - f_n||_q$$

für alle $n, m \in \mathbb{N}$. Dann

$$||f_m - f_n||_p \le ||f_m - f_n||$$

und

$$||f_m - f_n||_q \le ||f_m - f_n||$$

Somit, weil f_n Cauchy in $L^p \cap L^q$ ist, dann f_n ist Cauchy in L^p und in L^q . Nach dem Satz 4.11 (Fischer-Riesz) existiert $f_p \in L^p$ und $f_q \in L^q$ mit $||f_n - f_p||_p \to 0$ und $||f_n - f_q||_q \to 0$.

Sei $\varepsilon > 0$ fest, dann existiert $N \in \mathbb{N}$, so dass

$$||f_n - f_p||_p^p < \varepsilon^{p+1}$$

für alle $n \geq N$. Sei $h(x) = x^p$. Nach dem Satz 3.7 (Markov Ungleichung), wir haben

$$\mu\{|f_n - f_p| > \varepsilon\} \le \frac{1}{\varepsilon^p} \int |f_n - f_p|^p d\mu < \frac{1}{\varepsilon^p} \varepsilon^{p+1} = \varepsilon.$$

Somit $f_n \to f_p$ μ -stochastisch. Mit Satz 3.10, existiert eine Teilfolge $f_{n_k} \to f_p$ μ -f.ü.

Fall $q < \infty$. Ähnlich wie oben, $f_n \to f_q$ μ -stochastisch, und es existiert eine Teilfolge $f_{n'_k} \to f_q$ μ -f.ü.

Fall $q = \infty$. $f_n \to f_q \mu$ -f.ü.

Folglich, $f_p = f_q =: f, f \in L^p \cap L^q$. Wir schliessen dass $L^p \cap L^q$ ist eine Banachraum.

(b) Fall $q < \infty$.

Sei $\lambda \in (0,1)$, so dass $r = \lambda p + (1-\lambda)q$. Wir haben

$$||f||_r^r = \int |f|^r d\mu = \int |f|^{\lambda p} |f|^{(1-\lambda)q} d\mu = |||f|^{\lambda p} |f|^{(1-\lambda)q} ||_1.$$

Bemerkung Sie dass $\lambda + (1 - \lambda) = 1$, und dann mit Satz 4.2, haben wir

$$||f||_r^r = ||f|^{\lambda p} |f|^{(1-\lambda)q} ||_1 \le ||f|^{\lambda p} ||_{1/\lambda} ||f|^{(1-\lambda)q} ||_{1-\lambda}$$
$$= ||f||_p^{\lambda p} ||f||_q^{(1-\lambda)q}$$

d.h.

$$||f||_r \le ||f||_p^{\lambda p/r} ||f||_q^{(1-\lambda)q/r}.$$

Sei $\lambda' = \frac{\lambda p}{r} \in (0,1)$. Es ist klar dass $(1-\lambda)q/r = 1-\lambda'$ weil $(1-\lambda)q = r-\lambda p$. Wir schliessen

$$||f||_r \le ||f||_n^{\lambda'} ||f||_a^{1-\lambda'}$$
.

Somit $L^p \cap L^q \subset L^r$.

Fall $q = \infty$.

Wir schrieben r = (r - p) + p. $f \in L^{\infty}$. Somit

$$\int |f|^r d\mu = \int |f|^{r-p} |f|^p d\mu \le ||f||_{\infty}^{r-p} \int |f|^p d\mu$$

d.h.

$$||f||_r^r \le ||f||_{\infty}^{r-p} ||f||_p^p$$

und

$$||f||_r \le ||f||_{\infty}^{(r-p)/r} ||f||_p^{p/r}$$

Sei $\lambda = p/r \in (0,1)$. Somit

$$||f||_r \le ||f||_{\infty}^{1-\lambda} ||f||_p^{\lambda}$$

und $L^p \cap L^\infty \subset L^r$.

(c) $L^p \cap L^q$ ist eine Banachraum und ι ist eine lineare Abbildung. Wir müssen zeigen, dass $\|\iota\| < \infty$.

Sei $f \in L^p \cap L^q$ mit ||f|| = 1. Somit $||f||_p \le 1$ und $||f||_q \le 1$. Mit (b)

$$||f||_r \le ||f||_p^{\lambda} ||f||_q^{1-\lambda} \le 1^{\lambda} 1^{1-\lambda} = 1.$$

Aber

$$\|\iota\| = \sup_{\|f\|=1} \|f\|_r$$

und dann

$$\|\iota\| \le 1.$$

Mit Satz II.7.1, wir haben dass ι ist stetig.

11.4. Wir fixieren beliebiges c > 0. Dann

$$\{Y \le c\} = \left\{ \inf_{r \in [0,t] \cap \mathbb{Q}} X_r \le c \right\} = \bigcup_{r \in [0,t] \cap \mathbb{Q}} \{X_r \le c\}.$$

 X_r ist \mathcal{F}_t messbar und mit Satz II.1.9, $\{X_r \leq c\} \in \mathcal{F}_t$.

 $[0,t] \cap \mathbb{Q}$ ist abzählbar, dann $\bigcup_{r \in [0,t] \cap \mathbb{Q}} \{X_r \leq c\} \in \mathcal{F}_t$. Mit Satz II.1.9 Y ist messbar.

Wir können bestimmen $\mathbb{R}^{[0,\infty)} = \{f : [0,\infty) \to \mathbb{R}\}$ und dann $X_u(f) = f(u), u \ge 0$.

Somit

$$Z(f) := \sup_{r \in [0,t]} f(r).$$

Wir fixieren c > 0.

$$\{Z(f) < c\} = \bigcap_{r \in [0,t]} \{X_r < c\} = \bigcap_{r \in [0,t]} \{f : f(r) < c\} = \{f : f(x) < c \ \forall x \in [0,t]\}.$$

Somit Z(f) ist \mathcal{F}_t -messbar wenn $\{f : f(x) < c \ \forall x \in [0, t]\}$ ist \mathcal{F}_t -messbar.

ETH Zürich FS 2019

Ausserdem, mit Satz 1.11, existiert $I \subset [0,t]$ abzählbar, so dass wenn Z messbar ist, dann ist $\{Z(f) < c\} \in \sigma(X_s; s \in I)$. Sei $X_I : \mathbb{R}^{[0,t]} \to \mathbb{R}^I$. Mit Satz II.1.18, Z ist $\sigma(X_s; s \in I)$ -messbar wenn existiert $g : \mathbb{R}^I \to \mathbb{R}$ messbar und

$$Z = q \circ X_I$$

d.h.

$$\{f : f(x) < c \ \forall x \in [0, t]\} = \{f : g \circ X_I(f) \le c\}.$$

Sei $t \in I^c$ und $f: [0,t] \to \mathbb{R}$, f(t) > c, und $g \circ X_I(f) \le c$. Somit $f \in \{f: g \circ X_I(f) \le c\}$, aber $f \notin \{f: f(x) < c \ \forall x \in [0,t]\}$.

Wir schliessen, dass Z ist nicht \mathcal{F}_t messbar.

7. Mai 2019 5/5