- 1.1. \mathcal{A} ist ein Dynkin-System, falls
 - 1) $\Omega \in \mathcal{A}$;
 - 2) \mathcal{A} ist abgeschlossen unter \cup abzählbar disjunkt;
 - 3) $A, B \in \mathcal{A}$ mit $A \subseteq B \Rightarrow B \setminus A \in \mathcal{A}$.

(Daraus folgt $\emptyset = \Omega \setminus \Omega \in \mathcal{A}$.)

(a) Wir setzen $E_1 = A, E_2 = B$ und $E_k = \emptyset$ für k > 2. Dann gilt $E_k \in \mathcal{A}$ für alle $k \ge 1$. Ausserdem gilt $E_k \cap E_{k'} = \emptyset$, falls $k \ne k'$, und

$$A \cup B = \cup_{k=1}^{\infty} E_k,$$

das damit ein Element von \mathcal{A} ist.

- (b) Wir setzen $A = \bigcup_{n=1}^{\infty} A_n$, $E_1 = A_1$ und $E_n = A_n \setminus A_{n-1}$ für n > 1. Dann gilt $E_n \in \mathcal{A}$ für alle $n \geq 1$. Ausserdem gilt $E_n \cap E_{n'} = \emptyset$, falls $n \neq n'$, und daher $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$. Weil $A = \bigcup_{n=1}^{\infty} E_n$ ist, folgt $A \in \mathcal{A}$.
- (c) Wir setzen $E_n = \Omega \setminus A_n = A_n^c \in \mathcal{A}$. Es gilt

$$E_1 \subseteq E_2 \subseteq E_3 \subseteq \dots$$

und daher gilt mit Punkt b) $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$. Deswegen gilt

$$(\bigcup_{n=1}^{\infty} E_n)^c \in \mathcal{A} \text{ und } \bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} A_n^c,$$

d.h. $A = \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$.

(d) Wir müssen nur die Eigenschaft 2) zeigen. Wir bemerken, dass für $A, B \in \mathcal{C}$ mit $A \cap B = \emptyset$ gilt $A \cup B \in \mathcal{C}$. Warum? Es gilt $\Omega \setminus A \in \mathcal{C}$, und weil $B \subseteq \Omega \setminus A$ ist, bekommen wir

$$\Omega \setminus (A \cup B) = (\Omega \setminus A) \setminus B \in \mathcal{C}.$$

Daher gilt $A \cup B \in \mathcal{C}$.

Seien $A_1, A_2, ... \in \mathcal{C}$ mit $A_n \cap A_{n'} = \emptyset$ für $n \neq n'$. Wir setzen $E_1 = A_1$ und $E_n = A_1 \cup \cdots \cup A_n$ für n > 1. Wegen der Bemerkung gilt $E_n \in \mathcal{C}$ und $E_1 \subseteq E_2 \subseteq ...$ Wir schliessen, dass

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} E_n \in \mathcal{C}.$$

1.2.

- (a) A ist ein Ring, falls
 - 1) $\emptyset \in \mathcal{A}$;
 - 2) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$;
 - 3) $A, B \in \mathcal{A} \Rightarrow B \setminus A \in \mathcal{A}$.

Die Eigenschaft 1) ist klar, weil $\emptyset \in \mathcal{N}$ und $f^{-1}(\emptyset) = \emptyset$. Jetzt seien $A, B \in f^{-1}(\mathcal{N})$. Es gibt $A', B' \in \mathcal{N}$, so dass $A = f^{-1}(A')$ und $B = f^{-1}(B')$. \mathcal{N} ist ein Ring, und deshalb sind $A' \cup B' \in \mathcal{N}$, $A' \setminus B' \in \mathcal{N}$. Wir benutzen $A \cup B = f^{-1}(A') \cup f^{-1}(B') = f^{-1}(A' \cup B')$ und ähnlich $A \setminus B = f^{-1}(A') \setminus f^{-1}(B') = f^{-1}(A' \setminus B')$, und daraus schliessen wir, dass $f^{-1}(\mathcal{N})$ ein Ring ist.

(b) $f^{-1}(\mathcal{N}) \subseteq f^{-1}(\mathcal{R}(\mathcal{N}))$: mit a), weil $\mathcal{R}(\mathcal{N})$ ein Ring ist, ist auch $f^{-1}(\mathcal{R}(\mathcal{N}))$ ein Ring. Folglich, weil $\mathcal{R}(f^{-1}(\mathcal{N}))$ der kleinste Ring ist der $f^{-1}(\mathcal{N})$ enthält, gibt $\mathcal{R}(f^{-1}(\mathcal{N})) \subseteq f^{-1}(\mathcal{R}(\mathcal{N}))$.

Es bleibt zu beweisen, dass $f^{-1}(\mathcal{R}(\mathcal{N})) \subseteq \mathcal{R}(f^{-1}(\mathcal{N}))$. Es ist klar, dass $f^{-1}(\mathcal{N}) \subseteq \mathcal{R}(f^{-1}(\mathcal{N}))$. Sei $\mathcal{C} := \{A \in 2^N | f^{-1}(A) \in \mathcal{R}(f^{-1}(\mathcal{N}))\}$. Man kann überprüfen, dass \mathcal{C} ein Ring ist und $\mathcal{N} \subseteq \mathcal{C}$, $f^{-1}(\mathcal{C}) \subseteq \mathcal{R}(f^{-1}(\mathcal{N}))$. Ausserdem, ist $\mathcal{R}(\mathcal{N})$ der kleinste Ring, der \mathcal{N} enthält, und damit folgt $f^{-1}(\mathcal{R}(\mathcal{N})) \subseteq \mathcal{R}(f^{-1}(\mathcal{N}))$.

1.3.

(a) Für $\omega, \omega' \in \Omega$ mit $\omega \neq \omega'$ setzen wir

$$\tau(\omega,\omega') := \left\{ A \in 2^{\Omega} : I_A(\omega) = I_A(\omega') \right\}.$$

Behauptung: $\tau(\omega, \omega')$ ist eine σ -Algebra.

Offenbar ist $\Omega \in \tau(\omega, \omega')$. Wenn $A \in \tau(\omega, \omega')$ ist, gilt entweder $\omega, \omega' \in A$, oder $\omega, \omega' \in A^c$. In jedem Fall erhalten wir

$$I_{A^c}(\omega) = I_{A^c}(\omega')$$
,

d.h. A^c ist in $\tau(\omega, \omega')$. Falls $(A_n)_n \subseteq \tau(\omega, \omega')$, nehmen wir ein beliebiges $n \in \mathbb{N}$ (falls eines existiert), so dass $\omega, \omega' \in A_n$. Somit gilt $\omega, \omega' \in \cup_n A_n$ und

$$I_{\cup_n A_n}(\omega) = I_{\cup_n A_n}(\omega')$$
.

Wenn es kein solches n gibt, folgt $\omega, \omega' \notin A_n$ für alle n und nochmals

$$I_{\cup_n A_n}(\omega) = I_{\cup_n A_n}(\omega')$$
.

D-MATH Prof. J. Teichmann

Also ist $\tau(\omega, \omega')$ eine σ -Algebra.

Weil $\{\omega\} \notin \tau(\omega, \omega')$, erhalten wir $\tau(\omega, \omega') \subsetneq 2^{\Omega}$. Wir nehmen an, dass

$$\mathcal{A} \subseteq \tau(\omega, \omega')$$
.

Definitionsgemäss gilt $\sigma(\mathcal{A}) \subseteq \tau(\omega, \omega')$, aber nach Voraussetzung gilt $\sigma(\mathcal{A}) = 2^{\Omega}$. Somit folgt $\mathcal{A} \nsubseteq \tau(\omega, \omega')$, d.h. $\exists A \in \mathcal{A}$, so dass

$$I_A(\omega) \neq I_A(\omega')$$
.

(b) Wir fixieren $\omega \in \Omega$. Für jedes $\omega' \in \Omega$ mit $\omega' \neq \omega$ gilt nach Voraussetzung entweder

$$\exists A \in \mathcal{A} : \ \omega \in A, \ \omega' \notin A \tag{1}$$

oder

$$\exists A \in \mathcal{A} : \ \omega \notin A, \ \omega' \in A. \tag{2}$$

Wir setzen

$$A(\omega') := \begin{cases} A & \text{falls (1) gilt} \\ A^c & \text{falls (2) gilt} \end{cases}$$

In jedem Fall gilt $A(\omega') \in \sigma(\mathcal{A})$ und $\omega \in A(\omega'), \omega' \notin A(\omega')$.

Weil $\{\omega' \in \Omega : \omega' \neq \omega\}$ abzählbar ist, ist die Menge $\cap_{\omega' \neq \omega} A(\omega')$ ein Element von $\sigma(\mathcal{A})$. Aber es ist klar, dass

$$\cap_{\omega' \neq \omega} A(\omega') = \{\omega\}$$

ist. Wir haben gezeigt, dass das beliebige Element $\{\omega\}$ in $\sigma(\mathcal{A})$ ist. Somit gilt für eine beliebige (abzählbare) Teilmenge $B \subseteq \Omega$

$$B = \cup_{w \in B} \{\omega\} \in \sigma(\mathcal{A}),$$

d.h. $2^{\Omega} = \sigma(\mathcal{A})$.

1.4.

- (a) Das ist klar. Endliche Vereinigungen von abzählbaren Mengen sind abzählbar.
- (b) (i) Angenommen, $\sigma(\mathcal{E})$ ist abzählbar; dann ist Φ wohldefiniert, weil $\sigma(\mathcal{E})$ abgeschlossen unter abzählbaren Durchschnitten ist. Somit ist $\Phi(x) \in \sigma(\mathcal{E})$.

- (ii) Angenommen $x \notin \Phi(y)$. Dann gilt, $\Phi(x) \setminus \Phi(y) = \Phi(y)^c \cap \Phi(x) \in \sigma(\mathcal{E})$. Aber $\Phi(x)$ ist die kleinste Menge, die x enthält und $\Phi(x) \cap \Phi(y) \neq \emptyset$. Somit ist $x \in \Phi(y)$. Ähnlich erhalten wir $y \in \Phi(x)$. Mit der Minimalitäts-eigenschaft von $\Phi(x)$ und $\Phi(y)$ erhalten wir, dass $\Phi(y) \subseteq \Phi(x)$ und $\Phi(x) \subseteq \Phi(y)$. Daher ist $\Phi(x) = \Phi(y)$.
- (iii) Jede Menge $A \in \sigma(\mathcal{E})$ lässt sich nach (i) schreiben als

$$A = \bigcup_{x \in A} \Phi(x),$$

und nach (ii) lässt sich das auch als disjunkte Vereinigung schreiben. Weil aber schon $\mathcal{E} \subseteq \sigma(\mathcal{E})$ abzälbar unendlich ist, muss $\sigma(\mathcal{E})$ überabzälbar sein, denn wenn wir alle möglichen disjunkten Vereinigung von Mengen aus \mathcal{E} nehmen, so folgt

$$\operatorname{card}(\sigma(\mathcal{E})) \ge \operatorname{card}(2^{\mathcal{E}}) = 2^{\aleph_0}.$$