D-MATH Prof. J. Teichmann

- 1.1. Seien $\Omega \neq 0$ und $\mathcal{A} \subseteq 2^{\Omega}$ ein Dynkin-System. Zeigen Sie die folgenden Aussagen:
 - (a) Für $A, B \in \mathcal{A}$ mit $A \cap B = \emptyset$ gilt $A \cup B \in \mathcal{A}$.
 - (b) Für $A_1, A_2, \ldots \in \mathcal{A}$ mit $A_n \uparrow A$ gilt $A \in \mathcal{A}$.
 - (c) Für $A_1, A_2, \ldots \in \mathcal{A}$ mit $A_n \downarrow A$ gilt $A \in \mathcal{A}$.
 - (d) Sei jetzt $\mathcal{C} \subseteq 2^{\Omega}$ ein beliebiges Mengensystem mit
 - $\Omega \in \mathcal{C}$.
 - Für $A, B \in \mathcal{C}$ mit $A \subseteq B$ gilt $B \setminus A \in \mathcal{C}$.
 - Für $A_1, A_2, \ldots \in \mathcal{C}$ mit $A_n \uparrow A$ gilt $A \in \mathcal{C}$.

Zeigen Sie, dass \mathcal{C} ein Dynkin-System ist.

- **1.2.** Seien $M, N \neq \emptyset$ Mengen und $\mathcal{M} \subseteq 2^M, \mathcal{N} \subseteq 2^N$ Mengensysteme. Sei $f \colon M \to N$.
 - (a) Zeigen Sie: Wenn \mathcal{N} ein Ring ist, dann ist $f^{-1}(\mathcal{N})$ ein Ring.
 - (b) Sei allgemein $\mathcal{R}(C)$ der kleinste Ring, der das Mengensystem \mathcal{C} enthält. Zeigen Sie, dass

$$\mathcal{R}(f^{-1}(\mathcal{N})) = f^{-1}(\mathcal{R}(\mathcal{N}))$$

1.3. Für $A \subseteq \Omega$ definieren wir die Indikatorfunktion I_A als

$$I_A(\omega) := \left\{ \begin{array}{ll} 1 & \text{falls } \omega \in A \\ 0 & \text{falls } \omega \notin A \end{array} \right.$$

Sei $\mathcal{A} \subseteq 2^{\Omega}$ ein beliebiges Mengensystem mit $\sigma(\mathcal{A}) = 2^{\Omega}$.

(a) Zeigen Sie, dass für alle $\omega, \omega' \in \Omega$ mit $\omega \neq \omega'$ eine Menge $A \in \mathcal{A}$ mit

$$I_A(\omega) \neq I_A(\omega')$$

existiert.

- (b) Nehmen Sie an, dass Ω abzählbar ist. Zeigen Sie die umgekehrte Implikation, d.h. falls (a) gilt, dann ist $\sigma(A) = 2^{\Omega}$.
- **1.4.** Sei $\mathcal{E} \subseteq 2^{\Omega}$ ein abzählbar unendliches Mengensystem. Sei $\mathcal{A}(\mathcal{E})$ die kleinste Algebra, und $\sigma(\mathcal{E})$ die kleinste σ -Algebra, die das Mengensystem \mathcal{E} enthalten.
 - (a) Zeigen Sie, dass $\mathcal{A}(\mathcal{E})$ höchstens abzählbar ist.

- (b) Zeigen Sie in den folgenden Schritten, dass $\sigma(\mathcal{E})$ überabzählbar ist.
 - (i) Angenommen, $\sigma(\mathcal{E})$ ist abzählbar. Sei $\Phi \colon \Omega \to \sigma(\mathcal{E})$ so, dass

$$\Phi(x) = \bigcap_{x \in U \in \sigma(\mathcal{E})} U$$

Zeigen Sie, dass Φ wohldefiniert ist.

- (ii) Für alle $x, y \in \Omega$ gilt: Wenn $\Phi(x) \cap \Phi(y) \neq \emptyset$, dann ist $\Phi(x) = \Phi(y)$.
- (iii) Widerspruch! Schliessen Sie, dass $\sigma(\mathcal{E})$ überabzählbar ist.

Abgabetermin:

Bitte legen Sie Ihre Lösungen bis spätestens Montag, 25.02.2017.

Allgemeine informationen sind unter:

https://metaphor.ethz.ch/x/2019/fs/401-2284-00L/