- **7.1.** Seien $f_n: \Omega \to \overline{\mathbb{R}}, n \in \mathbb{N}$, messbar.
 - (a) Zeigen Sie: Gilt $f_n \geq g$ μ -f.ü. für jedes n mit $g \in \bar{\mathcal{L}}^1(\mu)$, so folgt

$$\int \left(\liminf_{n} f_n \right) d\mu \le \liminf_{n} \int f_n d\mu. \tag{1}$$

- (b) Zeigen Sie: Ohne die zusätzliche Voraussetzung ist (1) im Allgemeinen falsch.
- **7.2.** Seien $-\infty < a < b < \infty$ und $f : [a, b] \to \mathbb{R}$ eine Funktion. Eine Zerlegung σ von [a, b] ist eine endliche Folge $a = x_0 < x_1 < \cdots < x_n = b$. Wir definieren

$$M(\sigma) = \sum_{i=1}^{n} (x_i - x_{i-1}) \sup \{ f(y) : y \in [x_{i-1}, x_i] \}$$

und

$$m(\sigma) = \sum_{i=1}^{n} (x_i - x_{i-1}) \inf \{ f(y) : y \in [x_{i-1}, x_i] \}$$

und sagen, dass f Riemann-integrierbar ist, falls

$$\infty > \inf_{\sigma} M(\sigma) = \sup_{\sigma} m(\sigma) > -\infty$$

gilt. Sei λ das Lebesguemass auf [a,b]. Zeigen Sie: Falls f Riemann-integrierbar ist, so ist f ist Lebesgue-messbar und

$$\inf_{\sigma} M(\sigma) = \sup_{\sigma} m(\sigma) =: \int_{[a,b]} f(x) dx = \int_{[a,b]} f d\lambda.$$

7.3.

(a) Sei (X, \mathcal{A}, μ) ein Massraum und $f: X \times [a, b] \to \mathbb{R}, -\infty < a < b < \infty$ eine Funktion mit und $f(\cdot, t): X \to \mathbb{R} \in \mathcal{L}^1(\mu)$ für alle $t \in [a, b]$. Nehmen Sie an, dass $\frac{\partial f}{\partial t}$ existiert und $\left|\frac{\partial f}{\partial t}(x, t)\right| \leq g(x)$ für alle x und t, wobei $g \in \mathcal{L}^1(\mu)$. Zeigen Sie, dass

$$\int_{X} \frac{\partial f}{\partial t}(x,t) d\mu = \frac{\partial}{\partial t} \int_{X} f(x,t) d\mu.$$

(b) Berechnen Sie $\lim_{n\to\infty} \int_0^1 f_n d\lambda$ für

1)
$$f_n(x) = \frac{1+nx}{(1+x)^n}$$

2)
$$f_n(x) = \frac{nx \log x}{1 + n^2 x^2}$$
.

7.4. Seien $(\Omega, \mathcal{A}, \mu)$ ein Massraum, Y eine Menge und $\phi: \Omega \to Y$ eine Abbildung. Wir definieren den *Pushforward von* \mathcal{A} als die σ -Algebra

$$\phi_* \mathcal{A} := \left\{ B \subseteq Y : \phi^{-1}(B) \in \mathcal{A} \right\} \subseteq 2^Y$$

und den Pushforward von μ als die Abbildung $\phi_*\mu:\phi_*\mathcal{A}\to[0,\infty]$, so dass

$$\phi_*\mu(B) := \mu(\phi^{-1}(B))$$
.

- (a) Zeigen Sie, dass $(Y, \phi_* \mathcal{A}, \phi_* \mu)$ ein Massraum ist.
- (b) Zeigen Sie, dass $\phi_* \mathcal{A}$ die grösste σ -Algebra \mathcal{Y} auf Y ist, für die ϕ \mathcal{A} - \mathcal{Y} -messbar ist.
- (c) Zeigen Sie, dass $f: Y \to \mathbb{R}$ $\phi_* \mathcal{A}$ -messbar ist genau dann, wenn $f \circ \phi: \Omega \to \mathbb{R}$ \mathcal{A} -messbar ist.
- (d) Sei $f: Y \to [0, \infty]$ $\phi_* \mathcal{A}$ -messbar. Zeigen Sie die Transformationsformel

$$\int_{\Omega} f(\phi(\omega)) \ d\mu(\omega) = \int_{V} f(y) \ d\phi_* \mu(y) . \tag{2}$$

(e) Zeigen Sie, dass (2) auch dann gilt, wenn $\mathcal{Y} \subseteq 2^Y$ eine σ -Algebra auf Y, ϕ \mathcal{A} - \mathcal{Y} -messbar und f \mathcal{Y} -messbar ist.

Abgabetermin:

Bitte geben Sie Ihre Lösungen bis spätestens Montag, 08.04.2019.

Allgemeine Informationen sind unter:

http://metaphor.ethz.ch/x/2019/fs/401-2284-00L/