Probeprüfung

Aufgabe 1 (16 Punkte). Entscheiden Sie jeweils, ob die Aussage wahr oder falsch ist. Jedes richtig gesetzte Kreuz gibt +1 Punkt, jedes falsch gesetzte $-\frac{1}{2}$ Punkt, unbeantwortete Aufgaben 0 Punkte. Insgesamt können bei dieser Aufgabe keine negativen Punktzahlen erreicht werden. (Es können ggf. mehrere Aussagen oder keine Aussage einer Teilaufgabe wahr sein.)

- a) Für $n \in \mathbb{N}$ sei $D_{2n} = \langle \sigma, \tau \mid \sigma^n = \tau^2 = (\sigma \tau)^2 = 1 \rangle$ die Diedergruppe.
 - $\square W \square F \quad C_2 \subset D_{2n}$ ist eine normale Untergruppe.
 - \square W \square F Sei V eine endlich dimensionale irreduzible komplexe Darstellungen von D_{2n} . Dann ist $\dim_{\mathbb{C}} \operatorname{Hom}_{D_{2n}}(V,V)=1$.
 - \square W \square F Sei V eine endlich dimensionale komplexe Darstellung von D_{2n} . Dann gibt es bis auf Skalierung ein eindeutiges Skalarprodukt bezüglich dem die Darstellung unitär ist.
- b) Sei exp : $\mathfrak{gl}(n,\mathbb{R}) \to \mathrm{GL}(n,\mathbb{R})$ das Matrixexponential, [-,-] der Kommutator und ad $_X Y = [X,Y]$.
- c) Sei g eine komplexe Lie Algebra mit Killing Form

in einer geeigneten Basis.

- $\Box W \ \Box F \ Dann$ ist $\mathfrak g$ halbeinfach und nicht abelsch.
- $\square W \square F$ Dann ist $\mathfrak{g} \simeq \mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{sl}(2,\mathbb{C})$.
- $\Box W \ \Box F \ \ \text{Dann ist } \{x \in \mathfrak{g} \mid \forall y \in \mathfrak{g} : K(x,y) = 0\} \subset \mathfrak{g} \text{ ist ein Lie Algebra ideal.}$
- d) Betrachte die (definierende) Darstellung ρ von SO(3) auf $V = \mathbb{R}^3$. Sei $\rho_3 := \rho \otimes \rho \otimes \rho$ die entsprechende Darstellung auf $V_3 := V \otimes V \otimes V$. Sei

$$C = \rho_3(L_1)^2 + \rho_3(L_2)^2 + \rho_3(L_3)^2 \in \text{Hom}(V_3, V_3).$$

- $\Box {\bf W} \ \Box {\bf F} \ \ {\bf Der \ Operator} \ C \ {\bf ist \ SO(3)}$ -äquivariant, also $C \circ \rho_3(R) = \rho_3(R) \circ$
- $\square W \square F \quad \text{Es gilt } C = 8Id_{V_3}.$
- $\Box W \ \Box F \ \rho_3$ zerfällt in genau 4 isotypische Komponenten.

e) $\ \Box W \ \Box F \ \ Die zum Young-Diagramm$

$$\lambda =$$

gehörige irreduzible Darstellung V_{λ} von S_{10} ist 216-dimensional.

- f) $\Box W \Box F$ Die bis auf isomorphie einzigen 3 dimensionalen komplexe Lie Algebra und $\mathfrak{sl}(2,\mathbb{C}).$
 - $\Box W \ \Box F \ Jede irreduzible Darstellung einer abelschen komplexen Lie Algebra ist eindimensional.$

$$[X,Y]=Y \qquad \quad [X,Z]=Y \qquad \quad [Y,Z]=X$$

Dann ist ${\mathfrak g}$ mit [-,-]eine Lie Algebra.

 \Box W \Box F Sei $\rho: \mathfrak{g} \to \mathfrak{gl}(\mathbb{C}^n)$ eine Lie Algebra Darstellung und $v \in \mathbb{C}^n$ mit $v \neq 0$. Dann ist $\{\rho(x)v \in \mathbb{C}^n \mid x \in \mathfrak{g}\}$ ein irreduzibler Unterraum.

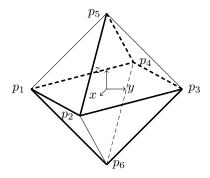
Aufgabe 2 (5+5+6=16 Punkte). Betrachte die folgenden 6 Punkte in \mathbb{R}^3

$$p_1 = (0, -1, 0)$$
 $p_2 = (1, 0, 0)$ $p_3 = (0, 1, 0)$ $p_4 = (-1, 0, 0)$ $p_5 = (0, 0, 1)$ $p_6 = (0, 0, -1)$

die ein Oktaeder Aufspannen (siehe Bild). Sei $K \subset \mathbb{R}^3$ die Vereinigung der Verbindungslinien von

 p_1 mit p_2 ; p_2 mit p_3 ; p_3 mit p_4 ; p_5 mit p_2 ; p_5 mit p_4 ; p_6 mit p_1 ; p_6 mit p_3

(im Bild mit dicken Linien gekennzeichnet). Die Symmetriegruppe von K ist die Untergruppe der Euklidischen Gruppe E(3) die K auf sich selbst abbildet.



- a) Bestimme die Symmetriegruppe von K als Untergruppe $G \subset E(3)$. Gebe G als Liste von Elementen $\tau_{xy}^a R^b \tau_{xz}^c$ an mit $a,b,c \in \mathbb{N}_0$; τ_{xy} der Spiegelung an der xy-Ebene; τ_{xz} der Spiegelung an der xz-Ebene; R der Drehung um die z-Achse mit 90° .
- b) Bestimme einen Isomorphismus $D_4 \to G$ wobei $D_4 = \langle \sigma, \tau \mid \sigma^4 = \tau^2 = (\sigma \tau)^2 \rangle$ die Diedergruppe ist.
- c) Betrachte das mechanische System bestehend aus 6 gleichen Massenpunkten auf den Punkten p_1, \ldots, p_6 , verbunden durch Federn entlang den Kanten des Oktaeders, mit Federkonstante F entlang K und $f \neq F$ sonst. Bestimme die maximale Anzahl verschiedener Eigenfrequenzen aufgrund der Symmetriegruppe $G \simeq D_4$. Berechne dazu den Charakter der gegebenen Darstellung von D_4 auf \mathbb{C}^{18} und ihre Zerlegung in irreduzible Komponenten

Hinweis: Die Charaktertafel von D_4 ist

	[1]	$[\sigma^2]$	$2[\sigma]$	$2[\tau]$	$2[\tau\sigma]$
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
χ_3	1	1	-1	1	-1
		1		-1	1
χ_5	2	-2	0	0	0

und darf ohne Beweis verwendet werden.

Aufgabe 3 (8+8=16 Punkte). Sei X_1,X_2,X_3,Y_1,Y_2,Y_3 eine Basis der reellen Lie Algebra $\mathfrak{so}(3)\oplus\mathfrak{so}(3)$ sodass

$$[X_i, X_j] = \sum_k \epsilon_{ijk} X_k \qquad [Y_i, Y_j] = \sum_k \epsilon_{ijk} Y_k \qquad [X_i, Y_j] = 0$$

wobei ϵ_{ijk} das Levi Civita Symbol ist.

- a) Zeige, dass $\mathfrak{so}(3) \oplus \mathfrak{so}(3) \simeq \mathfrak{so}(4)$ als reelle Lie Algebren.
- b) Für $n, m \in \mathbb{N}$ sei

$$\rho_{mn}: \mathfrak{so}(3) \oplus \mathfrak{so}(3) \to \operatorname{End}(V_m \otimes V_n)$$
$$x \oplus y \mapsto \rho_m(x) \otimes \mathbb{1} + \mathbb{1} \otimes \rho_n(y)$$

wobei $\rho_m:\mathfrak{so}(3)\to \mathrm{End}(V_m)$ die eindeutige m+1 dimensionale komplexe irreduziblen Darstellung von $\mathfrak{so}(3)$ ist. Zeige, dass m=n genau dann wenn

$$\sum_{i=1}^{3} \rho_{mn}(X_i + Y_i)\rho_{mn}(X_i - Y_i) = 0$$

Aufgabe 4 (6+3+6=16 Punkte). Wir betrachten eine Darstellung ρ : $SU(2) \to GL(V)$ von SU(2) auf $V = \mathbb{C}^7$, so dass

$$\operatorname{tr}\rho\begin{pmatrix}e^{it} & 0\\ 0 & e^{-it}\end{pmatrix} = 2\cos(3t) + 4\cos(t) + 1.$$

- a) Bestimmen Sie die Zerlegung von V in irreduzible Komponenten.
- b) Geben Sie explizit eine mögliche Form der zugehörigen Darstellung von $\mathfrak{su}(2)$ an, in einer Basis Ihrer Wahl.
- c) Betrachten Sie den Raum der symmetrischen SU(2)-invarianten Bilinearformen auf V, das heisst

$$U := \{B : V \otimes V \to \mathbb{C} \mid \text{linear};$$

$$B(u, v) = B(v, u) \ \forall u, v \in V;$$

$$B(\rho(A)u, \rho(A)v) = B(u, v) \ \forall u, v \in V, \ \forall A \in \text{SU}(2) \}.$$

Was ist die Dimension von U?

Eine Begründung ist für alle Teilaufgaben erforderlich.

Aufgabe 5 (5+6+5=16 Punkte). Betrachte die alternierende Gruppe

$$A_4 = \{ \sigma \in S_4 \mid \operatorname{sgn}(\sigma) = 1 \}$$

a) Bestimme die Konjugationsklassen von A_4 in Zykelnotation. Hinweis: Die Konjugationsklassen der symmetrischen Gruppe S_4 sind

$$[e]$$
 $[(12)]$ $[(123)]$ $[(12)(34)]$ $[(1234)]$

und dürfen ohne Beweis verwendet werden.

b) Bestimme eine 3 dimensionale irreduzible Darstellung von ${\cal A}_4$ und berechne deren Charakter.

Hinweis: Die Irreduzibilität ist aus dem Charakter ablesbar.

c) Bestimme die Charaktertafel von A_4 .