Aufgabe 1.

- a) Sei G eine Gruppe. Sei $g \in G$ und sei $a \in G$ eine Linksinverse (ag = 1) oder eine Rechtsinverse (ga = 1) von g. Dann ist $a = g^{-1}$.
- b) Sei $f: G \to G'$ ein Gruppenhomomorphismus. Dann ist ker $f = \{g \in G \mid f(g) = 1\}$ ein Normalteiler von G und im $f = \{f(g) \mid g \in G\}$ eine Untergruppe von G'. Zeige, dass

im
$$f \simeq G/\ker f$$
,

also dass im f und $G/\ker f$ isomorphe Gruppen sind.

Aufgabe 2. Bestimme jeweils die Symmetriegruppe der folgenden Objekte, d.h. die Grupper aller das Objekt auch sich selbst abbildender Isometrien. Bestimme (falls endlich) die Ordnung der Gruppe.

- a) Ein reguläres Sechseck im \mathbb{R}^2 .
- b) Ein reguläres Sechseck im \mathbb{R}^3 (eingebettet in der xy-Ebene).
- c) Ein Torus im \mathbb{R}^3 .
- d) Ein Rechteck im \mathbb{R}^2 mit ungleichen Seitenlängen.
- e) Ein Fischgratparkett (s. Boden in den Seminarräumen im G-Stock.)
- f) Dieses Gebilde (Antiprisma)

g) Ein Volleyball.

Hinweis: Insbesondere für die schwierigeren Teilaufgaben empfiehlt es sich, separat Bahn und Stabilisator eines geeigneten Elements anzuschauen.

Aufgabe 3. Sei $C_n = \mathbb{Z}/n\mathbb{Z}$ die Zyklische Gruppe der Ordnung n.

- a) Finde alle Untergruppen und die zugehörigen Links- und Rechtsnebrenklassen. Welche davon sind Normalteiler?
- b) Finde alle Konjugationsklassen.

Hinweis: Die Konjugationsklasse C_x von $x \in G$ ist die Bahn bezüglich der adjungierten Wirkung von G auf sich selbst, also

$$C_x = \{gxg^{-1} \mid g \in G\}.$$

c) Mache das selbe für die Diedergruppe D_4 .

Aufgabe 4 (Strukturtheorem für endlich generierte abelsche Gruppen). Zeige die folgende Aussage. Für jede endlich generierte abelsche Gruppe G existieren nicht negative ganze Zahlen a, n, n_1, \ldots, n_a so dass

$$G \simeq \mathbb{Z}^n \times C_{n_1} \times \cdots \times C_{n_n}$$

Gehe wie folgt vor. Für jedes Erzeugendensystem (x_1, \ldots, x_ℓ) von G definiere

$$m(x_1, \ldots, x_\ell) = \inf \left\{ m > 0 \mid \text{es existiert eine Relation } \sum_{j=1}^\ell m_j x_j = 0 \text{ und } m_j = m \right\}$$

Beachte, dass $m(x_1, \ldots, x_\ell)$ unendlich sein kann. Zeige,

- a) es existiert ein Erzeugendensystem (x_1,\ldots,x_k) so dass k minimal unter allen Erzeugendensystemen; $m(x_1,\ldots,x_k)$ minimal unter allen Erzeugendensystemen mit länge k; $m(x_1,\ldots,x_k)$ gleich der Ordnung von x_1 ist. Hinweis: Sei x_1,\ldots,x_k ein Erzeugendensystem mit k und $m(x_1,\ldots,x_k)$ minimal. Dann gibt eine Relation $mx_1+\sum_{j=2}^k m_jx_j=0$ mit $0\leq m_j< m$.
- b) für ein Erzeugendensystem wie in (a) ist die Abbildung

$$\langle x_1 \rangle \times \langle x_2, \dots, x_k \rangle \to G$$
 $(a, b) \mapsto a + b$

ein Isomorphismus

c) $\langle x_1 \rangle$ ist zyklisch. Folgere durch Induktion über k das Strukturtheorem.