Topology

Prof. Dr. Alessandro Sisto Luca De Rosa

Questions 1 and 6 are more conceptual and should have priority. Questions 4 and 5 admit a relatively short solution. Question 7 is harder, and you should leave it as the last one.

Ex.1:

Let X and Y be topological spaces, and let A be a subset of X and B be a subset of Y. Show that

$$\overline{A} \times \overline{B} = \overline{A \times B}.$$

In particular, conclude that the product of two closed sets is a closed set.

Ex.2:

Show that the following are homeomorphic:

- (i) The interval [0, 1] and the interval [2, 5];
- (ii) The interval (-1, 1) and the real line \mathbb{R} ;
- (iii) The closed disk or radius one in \mathbb{R}^2 and the closed square $[-1, 1] \times [-1, 1]$ is \mathbb{R}^2 ;

Ex.3:

Let p = (-1, 0) and q = (2, 0) be points in \mathbb{R}^2 , and let $D_1 = \{z \in \mathbb{R}^2 \mid d(z, p) < 1\}$ and $D_2 = \{z \in \mathbb{R}^2 \mid d(z, q) < 2\}$. Which of the following are connected?

- (i) $D_1 \cup D_2;$
- (ii) $\overline{D_1} \cup D_2;$
- (iii) $\overline{D_1} \cup \overline{D_2};$

You may use the fact that $\overline{D_1} = \{z \in \mathbb{R}^2 \mid d(z,p) \leq 1\}$ and $\overline{D_2} = \{z \in \mathbb{R}^2 \mid d(z,q) \leq 2\}.$

Exercise Sheet 3 Due to 13 March

Ex.4:

Let X be a set equipped with the discrete topology. Which subsets of X are connected?

Ex.5:

Let X and Y be path connected spaces. Show that $X \times Y$ is path connected.

Ex.6:

From the fact that an interval [a, b] is connected, deduce the intermediate value theorem. That is, prove that for a continuous function $f: [a, b] \to \mathbb{R}$ and for each c such that f(a) < c < f(b), there exists $x \in [a, b]$ such that f(x) = c.

Ex.7:

Let $S^1 = \{z \in \mathbb{R}^2 \mid d(z, (0, 0)) = 1\}$ be the unit circle in \mathbb{R}^2 , and let $f: S^1 \to \mathbb{R}$ be a continuous function. Show that there exists $z \in S^1$ such that f(z) = f(-z). In particular, f is not injective.

Note: if $z = (x_0, y_0)$ is a point in S^1 , then -z is the point $(-x_0, -y_0)$.