Topology

Prof. Dr. Alessandro Sisto Luca De Rosa Exercise Sheet 5 Due to 27 March

The Exercise 7 is the hardest, and should be left as last one. All the exercises admit rather short solution.

Ex.1:

Let \mathcal{T} be the following topology on the real line \mathbb{R} :

- $\emptyset \in \mathcal{T};$
- for each finite set $F \subset \mathbb{R}$, we declare $\mathbb{R} F \in \mathcal{T}$.
- (a) Check that \mathcal{T} is a topology and that $(\mathbb{R}, \mathcal{T})$ is compact.
- (b) Let \mathcal{T}_{std} be the standard topology on \mathbb{R} . Show that $(\mathbb{R}, \mathcal{T})$ and $(\mathbb{R}, \mathcal{T}_{std})$ are not homeomorphic.

Ex.2:

Show that $[0,1) \times [0,1)$ is homeomorphic to $[0,1] \times [0,1)$, but not to $[0,1] \times [0,1]$.

Ex.3:

Let X_i , for $i \in I$, be a family of Hausdorff topological spaces. Show that $X = \prod_{i \in I} X_i$ is a Hausdorff space.

Ex.4:

Write down an example of a topological space that is not Hausdorff. Note: recall that metric spaces are Hausdorff. If you have an example, check that is not a subspace of metric space (i.e. with respect to the induced topology).

Ex.5:

Let X be a first-countable topological space, x be a point of X and $\{O_{\alpha}\}_{\alpha=1}^{\infty}$ be a neighborhood basis for x.

- (i) For each $n \in N$, let $U_n = \bigcap_{\alpha=1}^n O_\alpha$, and let x_n be any point in U_n . Show that $\{x_n\}$ converges to x.
- (ii) Let $\{y_i\}$ be a sequence such that for each $n \in \mathbb{N}$ and $\alpha \in \mathbb{N}$ there is an i > n such that $y_i \in O_{\alpha}$. Show that there exists a subsequence $\{y_{i_j}\}$ of $\{y_i\}$ that converges to x.

Ex.6:

Let $(\mathbb{R}, \mathcal{T})$ be the real line equipped with the topology described in Question 1. Show that $(\mathbb{R}, \mathcal{T})$ is not first countable.

Ex.7:

Let I = [0, 1] and consider the space I^{I} (that is, *I*-many copies of *I*). Show that I^{I} is compact but not sequentially compact.

Hints:

- (i) You are allowed to use Tychonoff's theorem in the case of an uncountable product.
- (ii) You may want to think of the space I^I as the space of functions $f: I \to I$.
- (iii) To check that a subsequence does not converge, it is enough to show that it does not converge on a coordinate.